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ABSTRACT

'e idea that probability assignments reflect a state of information

is fundamental to the use of probability theory as a means of reasoning

about uncertain events . In order to achieve a consistent methodology

for assigning probabilities the following basic desideratum is required :

Two states of information that are perceived to be equivalent should

lead to the same probability assignments . This basic desideratum leads

to an invariance approach to the probabilistic encoding of information,

because the probability assignments must remain invariant to a change

from one state of information to an equivalent state of information .

The criterion of insufficient reason is one application of the invariance

approach .

The principle of maximum entropy has been proposed as a general

means of assigning probabilities on the basis of specified information .

Invariance considerations provide a much stronger justification for

this principle than has been heretofore available . Statistical equilib-

rium (invariance to randomization over time) provides the basis for

the maximum entropy principle in statistical mechanics . This derivation

allows a complete and comprehensive exposition of J . Willard Gibbs'

approach to statistical mechanics to be formulated for the first time .

Repeated, indistinguishable experiments have been the traditional

concern of statistics . De Finetti's concept of exchangeability is an

invariance principle that connects the inductive use of probability to

the traditional relative frequency viewpoint . An extension of the

criterion of insufficient reason to exchangeable sequences provides
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a basis for the maximum entropy principle . The derivation provides

new insight into the process of inference using sufficient statistics .

The Koopman-Pitman theorem relates distributions characterized by

sufficient statistics to states of information concerned with long

run averages .

The invariance approach gives other insights into the use of

probability theory as well . Exchangeability can be applied to time-

dependent and conditional random processes; infinitely divisible pro-

cesses are an interesting special case . Since the invariance approach

is based on the perceived equivalence between states of information,

it is important to have a means for questioning an assumed equivalence

as further information becomes available . A method for questioning

and revising equivalence assumptions is given, and its relation to the

classical theory of statistical hypothesis testing is discussed .
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Chapter I

INTRODUCTION

TheEpistemological Controversy

One of the most enduring of all philosophical controversies has

concerned the epistemology of uncertainty : how can logical methods

be used to reason about what is not known? When a formal theory of

probability was developed between two and three hundred years ago, it

was hailed as the answer to this question . Laplace wrote in the intro-

duction to A Philosophical Essay on Probabilities

I have recently published upon the same subject
a work entitled The Analytical Theory of Proba-
bilities . I present here without the aid of
analysis the principles and general results of
this theory, applying them to the most important
questions of life, which are indeed for the most
part only problems of probability . Strictly
speaking it may even be said that nearly all our
knowledge is problematical ; and in the small
number of things which we are able to know with
certainty, even in the mathematical sciences
themselves, the principal means for ascertaining
truth - induction and analogy - are based on
probabilities ; so that the entire system of human
knowledge is connected with the theory set forth
in this essay .

This viewpoint did not prevail for long . Later writers restricted

the domain of probability theory to repetitive situations analogous

to games of chance . The probability assigned to an event was defined

to be the limiting fraction of the number of times the event occurred

in a large number of independent, repeated trials . This "classical"

viewpoint underlies most of statistics, and it is still widely held

among contemporary probabilists .

1
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In recent years the broader view held by Laplace has reemerged .

Two different approaches have led to the resurgence of probability

theory as a general way of reasoning about uncertainty . Ramsey [72]

developed a personalistic theory of probability as a means of guaran-

teeing consistency for an individual's choices among wagers . Savage

[r'4 ] combined Ramsey's ideas with the von Neumann and Morgenstern [90]

theory of risk preference to achieve a formulation of decision theory

in which the axioms of probability emerge as the basis for representing

an individual's degree of belief in uncertain events .

Savage's formulation is behavioralistic because it relies on the

individual's choice among wagers as the operational means for measuring

probability assignments . A subject is asked to choose between wagering

on an uncertain event and wagering on a probabilistic "reference" process

for which the odds of winning are clearly evident, for example, from

symmetry considerations .

	

If the odds for the reference process are

adjusted so that the subject believes that the two wagers are of equal

value, then this number may be taken as a summary of his subjective

judgment about the occurrence of the uncertain event . Probabilities

determined in this fashion are often called subjective or personal

probabilities .

The other approach adopts a logical rather than a decision-oriented

viewpoint . We desire a means for reasoning logically about uncertain

events ; we are not concerned with making decisions among wagers . The

axioms of probability emerge as a consequence of intuitive assumptions

For a more detailed discussion of encoding probability assignments,
see North [60] .
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about inductive reasoning . This viewpoint was held by Keynes [44]

and Jeffreys [43] . Perhaps the most convincing development is the

functional equation derivation of R . T . Cox : If one is to extend

Boolean algebra so that the uncertainty of events may be measured by

real numbers, consistency requires that these numbers satisfy conditions

equivalent to the axioms of probability theory(L9], [35], [85]) .

An essential feature of both the personalistic and the "logical"

approaches is that probabilities must reflect the information upon which

they are based . Probability theory gives a way of reasoning about

one state of information in terms of other states of information .

The means by which this reasoning is accomplished is Bayes' Rule, a

simple formula that is equivalent to the multiplication law for con-

ditional probabilities . Since Bayes' Rule plays such an important

role, probability theory as a general means of reasoning about uncer-

tainty is often distinguished by the adjective "Bayesian" from the

more limited relative frequency or "classical" use of probability

theory .

The major difference between the personalistic and the "logical"

approach is in the starting point : the prior probabilities . How are

probabilities to be initially assigned? The personalist has a ready

answer : ask the subject to make a choice among wagers . The "logical"

school replies by asking why we should assume that the subject will

make choices that reflect his true state of knowledge . Substantial

evidence exists that people do not process information in a way con-

,i tent with the laws of probability (for example, Edwards et al [131,

Raiffa [69]) . A logical means of reasoning about uncertainty should

3



be free of irrational or capricious subjective elements, and there is

no assurance that the personalistic theory fulfills this requirement .

The personalist counters that there is no alternative to subjective

judgment available for assigning probabilities . It is simply not possible

to start by assuming no knowledge at all and then process all information

by Bayes' Rule (Jeffreys [43], p. 33) . Unless there is some formal

method for translating information into probability assignments we

shall be forced to rely on the subjective judgment of the individual.

1 .2 The Basic Desideratum

In this dissertation we shall examine a method for translating

information into probability assignments . For our efforts to have

meaning we shall require the following assumption, which seems self-

evident for both the personalistic and "logical" approaches to Bayesian

probability :

A probability assignment reflects a state of

information .

In the personalistic approach the process of translating information

into probability assignments is left to the individual . For the "logical"

approach it would be highly desirable to have formal principles by which

information might be translated into probability assignments . Using

these principles would prevent arbitrary subjective elements from being

introduced in going from the information to the probability assignment .

Further exposition on the controversy surrounding prior information
is to be found in such sources as Jeffreys [43], Savage f74], L75],
and Jaynes [40 ] .
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A basis for developing such formal principles has been suggested

by Jaynes [40) . As a basic desideratum let us require that "in two

problems where we have the same prior information, we should assign

the same prior probabilities ." The intended implication of this state-

ment is that a state of knowledge should lead to a unique choice of

models and probability distributions, independent of the identity,

personality, or economic status of the decision-maker . The essential

element of the basic desideratum is the notion of invariance . If two

or more states of information are judged equivalent, the probability

distribution should not depend on which of the states of information

was chosen as the basis for encoding the probability distribution .

The probability distribution should remain invariant if one of these

states of information is replaced by another .

This invariance approach to the probabilistic encoding of infor-

ination does not resolve all the difficulties . We cannot avoid subjective

elements in the process of encoding a probability distribution to

represent a state of information . The notion of equivalence between

states of information is always an approximation . No two distinct

situations can be the same in all aspects . Where more than one in-

dividual is concerned we must consider the difference in background .

Two people will judge a given situation on the basis of information

and prior experiences that are necessarily different in some particulars .

Before we can use the basic desideratum we must decide what information

and experience is relevant in making a probability assignment .

No criterion by which irrelevant information might be discarded

appears to be available, save subjective judgment based on past exper-

ience . The basic desideratum does not provide the basis for a truly
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"objective" methodology, for it must rely on an individual's subjective

judgment that two states of information are equivalent . This equivalence

may be clearly intuitive in some situations, while in others it repre-

sents only a crude approximation to the individual's judgment . Further-

more, an equivalence that was initially assumed may appear doubtful

after further information has become available that distinguishes one

state of information from another .

The necessity to use subjective judgment in applying the basic

desideratum suggests that we rephrase it as follows :

The Basic Desideratum : Two states of information that are

perceived to be equivalent should lead to the same probability

assignments .

We cannot eliminate subjective elements completely, but by using this

basic desideratum we move these elements back one stage . Instead of

in the assignment of probabilities, subjective elements appear in the

way that we characterize the relevant information . It is doubtful

that the quest for an objective methodology can be pushed much further .

1 .3 An Overview of the Invariance Approach

The basic desideratum as we have stated it above is so simple that

it appears to be a tautology . We shall see that it provides a unifying

basis for principles to translate information into probability distri-

butions and probabilistic models . Many of these principles have been

available for years in the writings of Laplace [x+71, Gibbs [23], and

more recently, de Finetti [20], [21] . Perhaps the most important
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contribution is that of Jaynes L33], [34], [35], [36], [37], [38],

[39], [40], [41] : the maximum entropy principle for assigning proba-

bilities on the basis of explicitly stated prior information .

This dissertation has been largely stimulated by Jaynes' work

and in many respects it is an extension of the lines of investigation

that he has pioneered. There is one important difference in emphasis .

Whereas Jaynes ascribes a fundamental importance to entropy, the present

work . is based on invariance criteria derived from the basic desideratum

stated above . From these invariance criteria Jaynes' maximum entropy

principle may be derived .

We shall examine four applications of the basic desideratum . An

overview of these applications is given in Figure 1 .1 ; the numbers

in parenthesis refer to the sections where the corresponding connection

is discussed.

Chapter 2 is devoted to the criterion of insufficient reason,

which is obtained by assuming that the state of information remains

invariant under a relabeling of the possible outcomes in an uncertain

situation . The discussion is illustrated using the Ellsberg paradox

as an example .

A review of the axiomatic approach to the maximum entropy principle

in Chapter 3 shows a need to derive this principle from more fundamental

considerations . Such a derivation is accomplished in Chapters 4 and 5

for two quite different problems using different applications of the

basic desideratum . Chapter 4 is devoted to the problem in statistical

mechanics addressed by J . Willard Gibbs . In Gibbs' deterministic

problem the uncertainty concerns the initial conditions for a set of

differential equations of motion . The invariance is to the time at
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which these initial conditions are determined the concept of statis-

tical equilibrium implies that the time of the determination should not

affect our information about the physical system. In particular, our

information should be the same whether the initial conditions are de-

termined at a fixed time or at a time chosen through some random

mechanism . This invariance to randomization provides a direct proof

for the principle of maximum entropy in statistical mechanics . The

principle has a relation to the criterion of insufficient reason that

we shall examine in the last section of Chapter 4 .

Chapter 5 begins the exploration of another application of the

basic desideratum, de Finetti's concept of exchangeability . This

concept provides a Bayesian interpretation to the notion of a statis-

tical ensemble . The invariance is to changes in the order in a sequence

of experimental results . De Finetti's theorem provides an important

insight into the nature of inference on repeated, indistinguishable

experiments . If the number of possible experimental outcomes is large

an additional principle is needed to reduce the inference problem to

manageable proportions . One such principle is the criterion of in-

sufficient reason extended to sequences of experimental outcomes ;

from this the principle of maximum entropy may be derived .

In the special case in which the state of knowledge concerns only

long run averages the maximum entropy principle for exchangeable

sequences leads to a special form for the probability distribution :

the exponential family . The Koopman-Pitman theorem shows that membership

in the exponential family is a necessary and sufficient condition for

inference using sufficient statistics . The case in which available
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knowledge concerns fractiles of the probability distribution and possibly

long run averages as well is solved using the maximum entropy principle

and standard optimization methods .

Chapter 6 examines the significance of the relationship between

sufficient statistics, the exponential family, and information in the

form of averages . By examining this relationship in the light of the

extended version of the criterion of insufficient reason, we gain

considerable insight into the conceptual basis for probability distri-

butions having sufficient statistics and therefore permitting conjugate

distributions for inference on parameters .

The basic desideratum can be applied directly to the determination

of prior probability distributions on parameters . If the problem of

assigning a distribution to a set of parameters is perceived to be

equivalent to the problem of assigning a distribution to a second set

of parameters related to the first set by a functional transformation,

a functional equation may be developed to solve for the probability

distribution on the parameter set . This method of transformation

groups is the only application of the basic desideratum discussed by

Jaynes [4l] ; it is summarized in Section 6 .3 .

The final application of the invariance approach, in Section 6 .),

:is to more complex repetitive processes . Exchangeability applied to

a continuous process leads to infinite divisibility, and a very strong

characterization of the process results . Exchangeability may be

weakened to conditional exchangeability if only some reorderings of

experimental results result in new states of information that are

perceived to be equivalent to the original state of information .

10



Conditional exchangeability provides a basis for time-dependent and

Markov dependent probabilistic models .

The basic desideratum can be applied only when states of information

are perceived to be equivalent ; further information about an uncertain

situation may throw the equivalence into doubt . In Chapter 7 a means

is developed for testing whether probabilistic models derived from the

basic desideratum are still appropriate after further information has

been received . The test is based on the use of Bayes' Rule, but it can

be related to some of the classical methods for statistical hypothesis

testing .

11



Chapter II

THE CRITERION OF INSUFFICIENT REASON

Let us suppose that we are able to specify the information that

is or is not relevant to the outcome of an uncertain situation . We

would like a principle detailing how a state of information should

specify a probability distribution . One such principle is the cri-

terion of insufficient reason, formulated by Jacob Bernoulli in the

seventeenth century and adopted later by Bayes and Laplace .

The criterion of insufficient reason may be viewed as an invariance

principle that characterizes certain states of information . We might

describe these states of information as "maximum ignorance" and we

shall define this property as follows : given an outcome space of

N (mutually exclusive, collectively exhaustive) possible outcomes,

our state of information remains the same if two or more of the outcomes

are interchanged; we perceive the problems as being identical before

and after the relabeling of the outcomes . The criterion of insufficient

reason states that for such a state of information, equal probabilities

should be assigned to each outcome . We can see that this criterion

follows immediately from the basic desideratum that probability assign-

ments are determined by the state of information . If our information

remains invariant under an interchange of elements in the outcome space,

We prefer this term to the "set of states of the world" used by Savage
[74] and others, and we wish to avoid the frequency connotation and
possible confusion with results of information-gathering inherent in
"sample space" or "sample description space" used by Feller [171,
Parzen [61] et al .

12



the probability assignments must remain unchanged by such a relabeling .

Hence, the probability assigned to any outcome must equal the

probability assigned to any other outcome ; we must assign all outcomes

equal probability .

To call a state of information that possesses the invariance

property described above "maximum ignorance" is somewhat misleading,

for we have encoded a considerable sum of knowledge in choosing the

set of outcomes that constitute the outcome space . Most of the con-

fusion and criticism of the criterion of insufficient reason has resulted

from failure to recognize the essential first step in the use of proba-

bility theory : specification of an outcome space, a "universe of

discourse" that constitutes the set of possible outcomes or events

to which probabilities will be assigned . Vague terms such as "states

of the world" and "states of nature" tend to obscure this fundamental

aspect of the encoding process . Before someone can meaningfully assign

a probability to an event it must be clear to him exactly what the

event is, and what set of events constitutes its complement .

To understand the applicability of the criterion of insufficient

reason, we must gain some feeling for what constitutes "maximum ignorance ."

A good starting point might be to examine some examples proposed by

Ellsberg [151 .

Consider the problem of assigning a probability p to drawing

a ball of the color we have chosen from an urn filled with black balls

* An invariance interpretation of the criterion of insufficient reason
has been discussed in a slightly different context by Chernoff [6] .
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and red balls . In one case (problem I) the urn is known to contain

one hundred balls, but nothing is known about the proportion of black

and red. In a second case (problem II) the urn is known to contain

exactly fifty black balls and fifty red balls . For both problems it

is clear that the outcome space is composed of two events : R, the

event that a red ball is drawn, and B, the event that a black ball

is drawn. If we choose the color "red," then we have picked p = p(R)

as the probability to be assigned, and from the axioms of probability

we deduce p(B) = 1 - p . But suppose we choose the color "black ;"

both problem I or problem II remain exactly the same except now

p = p(B), and p(R) = 1 - p. By choosing black instead of red, we

are in effect relabeling the states (Figure 2 .1) :

Choose "red"

	

Choose "black"

chosen color is drawn

	

red

	

black

other color is drawn

	

black

	

red

Figure 2 .1 : Relabeling the State Space

We feel that the result of the draw does not depend on which color

we chose, and so our information is invariant with respect to the change

in the labeling of the outcomes . Then for both problem I and problem II

we may characterize our state of information as "maximally ignorant ."

By the criterion of insufficient reason we should assign a probability

I = 1/2 to drawing a red ball if we choose red, or to a black ball

14



if we choose black ; i .e ., regardless of our choice of color p(R) =

p(B) = 1/2 . We could state in the same way that our state of infor-

mation is one of "maximum ignorance" with regard to the outcome of

heads versus tails on the flip of a coin, if interchanging the labels

"heads" and "tails" for the two sides of the coin results in a new

state of information that we judge to be indistinguishable from the

original state of information . The generalization of the concept to

more than two states is straightforward, if one keeps in mind that

a "maximum ignorance" state of information must be invariant to any

permutation of the states in the outcome space .

Ellsberg was concerned with the empirical phenomenon that people

prefer to place bets on problem II rather than problem I ; they seem

to exhibit a preference for "known" probabilities as opposed to "unknown"

probabilities . The volume of controversy that his paper has stimulated

([15], [i81, 1711, [5], 1731, [191, [80]) is perhaps indicative of

the confusion that still pervades the probabilistic foundations of

decision theory . Part of the confusion stems from indecision as to

whether decision theory should be normative or descriptive . If a

normative posture is adopted, then an argument advanced by Raiffa

L71] should convince us that for problem I as well as problem II we

can choose the color so that the probability of drawing the color we

choose is 1/2 : Flip a coin and let the outcome determine the choice

of "black" or "red ." From the (subjective) assumption that the coin

is "fair" we conclude that the probability we shall choose correctly

the color of the ball to be drawn is 1/2 . This randomization argument

lends an intuitive meaning to the concept of a "maximum ignorance"

15



state of information : Surely we can never be more ignorant than in

the situation where the labels on the states in the outcome space are

placed according to some "random"(i .e ., equally probable outcomes)

mechanism. However, the same distribution of equal probability for

each state may also characterize situations in which we feel intuitively

that we have a great deal of knowledge . For example, in problem II

we know the exact proportion of black and red balls in the urn, yet

The existence of at least one such mechanism is an assumption that
virtually everyone accepts, regardless of their views on the foundations
and applicability of probability theory . Pratt, Raiffa, and Schlaifer

([65), P . 355) take this assumption (in the mind of the decision maker)
as the basis for their development of subjective probability . De Finetti
has an extremely cogent discussion on this point, which merits quoting
in full ([20], p . 112) :

Thus in the case of games of chance, in which the calculus of
probability originated, there is no difficulty in understanding
or finding very natural the fact that people are generally
agreed in assigning equal probability to the various possible
cases, through more or less precise, but without doubt, very
spontaneous, considerations of symmetry . Thus the classical
definition of probability, based on the relation of the number
of favorable cases to the number of possible cases, can be
justified immediately : indeed, if there is a complete class
of n incompatible events, and if they are judged equally
probable, then by virtue of the theorem of total probability
each of them will necessarily have the probability p = 1/n
and the sum of m of them the probability m/n . A powerful
and convenient criterion is thus obtained : not only because
it gives us a way of calculating the probability easily when
a subdivision into cases that are judged equally probable is
found, but also because it furnishes a general method for
evaluating by comparison any probability whatever, by basing
the quantitative evaluation on purely qualitative judgments
(equality or inequality of two probabilities) . However this
criterion is only applicable on the hypothesis that the in-
dividual who evaluates the probabilities judges the cases
considered equally probable ; this is again due to a sub-
jective judgment for which the habitual considerations of
symmetry which we have recalled can furnish psychological
reasons, but which cannot be transformed by them into anything
objective .

16



we assign the same probabilistic structure as we do in problem I where

we know "nothing" about the proportion .

The Ellsberg paradox points out very clearly that there are two

dimensions to uncertainty which must be kept separate if we are to

avoid confusion . Dimension one involves the assignment of probabilities

to uncertain outcomes or states, while the second dimension measures

a strength of belief in these assignments : how much the assignments

would be revised as a result of obtaining additional information .

Problems I and II are equivalent in dimension one ; both have the equal

probability assignments to outcomes that corresponds to the state of

information, "maximum ignorance ." However, the problems are vastly

different in dimension two . Observing a red ball drawn (with replace-

ment) from the urn in problem I will change the state of information

into one for which the criterion of insufficient reason no longer

applies . In problem II even the observation of many red balls drawn

successively (with replacement) will not change the assignment of

equal probability to drawing a red and a black ball on the next draw.

The second dimension of uncertainty, how probability assignments

will change with new information, lends itself readily to analytical

treatment . Bayes' Rule provides a logical and rigorous framework

for the revision of probabilities as additional information becomes

available . Bayes' Rule requires, however, a conditional probability

structure relating this additional information to the original state .

Iri other words, we must have a likelihood function in order to use

Of course, there comes a point at which we might question the model,
e .g ., the implicit assumption that any ball in the urn is equally
likely to be selected. See Chapter 7 .
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Bayes' Rule . This likelihood function is nothing but another probability

assignment, to which invariance principles such as the criterion of

insufficient reason may or may not apply . Once we have the probabilistic

structure needed for Bayes' Rule, we simply work through the mathematics

of probability theory .

The criterion of insufficient reason and the generalizations that

we shall discuss are in no way contradictory to Bayes' Rule and the

axioms of probability ; they serve as a means of determining which

probabilistic structure will be an appropriate representation of the

uncertainty in a given situation . We stress the essential prerequisite :

the outcome space (the final outcomes as well as the possible results

of further information-gathering) must be specified in advance .
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Chapter III

THE MAXIMUM ENTROPY PRINCIPLE

Before we embark on the development of invariance principles as

a basis for probability assignments it is advisable to motivate this

development by examining some of the weaknesses in existing theory .

Jaynes' maximum entropy principle provides a means of translating

information into probability assignments, but, as we shall see, this

approach has several difficulties .

Derivations of entropy as a measure of the information contained

it a probability distribution have relied on the assumption that the

information measure should be additive where more than one uncertain

situation is considered . We present a slightly different derivation

that proceeds from the assumption that the information measure should

have the form of an expectation over possible outcomes . This approach

is then compared to the traditional derivations that take additivity

of the information measure as the fundamental assumption . The lack

of intuitive justification for either the expectation or the additivity

assumption implies the maximum entropy principle has not yet been given

a secure conceptual foundation .

If we assume that entropy is the proper measure of the information

contained in a probability distribution, then we can use entropy to

choose which of several probability distributions should be assigned

to represent a given state of information . Jaynes' maximum entropy

principle is to choose the distribution consistent with given
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information whose entropy is largest . We examine the maximum entropy

principle as it relates to methods of encoding probability distributions,

and we find that it does not lead to interesting results except in the

special case where some of the information concerns long run averages .

Later, in Chapters 5 and 6, we shall provide a secure conceptual

foundation for the maximum entropy principle by deriving it from in-

variance principles, and we shall examine in detail the significance

of long run average information .

3 . .L Derivation of Entropy as a Criterion for Choosing Among Probability

Distributions

Our task is to determine a measure of the information contained

in a probability distribution . We noted in the last chapter that

invariance with respect to relabeling of the states in the outcome

:pace leads to an assignment of equal probability for each state, and

intuitively we feel that this assignment represents a condition suitable

to call "maximum ignorance," for we can always achieve this state of

information by randomizing : selecting the i th label for the j th state

with probability 1/N, j = 1, . . . , N . We now wonder if it is possible

to develop a general measure of the "ignorance" inherent in a proba-

bility distribution . Shannon L78] first showed that such a measure

of ignorance is specified by a few simple assumptions .

Consider an uncertain situation with N possible outcomes

A L , . . . , AN. This is the basic probabilistic structure with which we

shall work, and in rough accordance with decision theory terminology

we shall call it a lottery (Figure 3 .1) . We shall not be concerned

20



about any value assignment to the outcomes, only with their probabilities .

The probability of the j th outcome will be denoted pj , j = 1, . . , N.

21

Figure 3 .1 : A Lottery

We would like to develop a function to measure the "ignorance"

or "lack of information" that is expressed in the lottery . We assume

that our measure will be totally independent of the values assigned

to the outcomes .

	

It is also to be stressed here that no decisions

are being made ; we are simply looking for a means of gaining insight

into various probabilistic structures .

We wish to develop a function H defined on lotteries that will

yield a real number which we may interpret as a measure of the "ignor-

ance" expressed in the lottery . This function will depend only on the

Implicitly we are assuming Savage's f751 postulate P4 , the substitu-
tion principle, that the probabilistic structure is independent of the
value of the outcomes . (This assumption is implied by the acceptance of
the basic desideratum that the state of information should specify the
probability distribution .)



probabilistic structure, e .g ., the probabilities p1 , . . . , pN .

Property 0 : H is a real-valued function defined on discrete

probability distributions p1 ,

N
N, and L p i = 1) .

What properties shall we require of the function H(p l' . . . ' PN)?

First, it seems reasonable to assert a version of the invariance prin-

c p_ie ; H should depend on the values of the p i 's, but not on their

ordering ; rearranging the labels on the outcomes in the lottery leaves

H unchanged . We can summarize this assumption as

Property 1 : H(pl, . . . , PN) is a symmetric function of its

arguments .

A second property that seems desirable is that small changes in the

probabilities should not cause large changes in H :

Property 2 : H(pl , . . •

probabilities pi •

i=l
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' pN
(i .e .,

	

p. > 0,

, p
N )

is a continuous function of the

The usefulness of the H measure is severely limited unless we

can extend it to more complex probabilistic structures than the simple

l ttery of Figure 3 .1 . In particular, we should be able to extend H

to compound lotteries . It seems natural to require the usual relation

for conditional probabilities :

Property 3a : In evaluating the information content of compound

lotteries the multiplication law for conditional probabilities



A
l l

holds : e .g ., for two events A and B,

p(AB) = p(A I B)p(B)

This property is a consistency requirement : The information content

should be the same whether the uncertainty is resolved in several stages

cr all at once . The property (3a) is equivalent to the decomposability

or "no fun in gambling" axiom of Von Neumann-Morgenstern utility theory

(Luce and Raiffa [52], p. 26) .

What form could we assume for H that would allow this measure

to be extended to compound lotteries? Perhaps the simplest assumption

that we might make is that H takes the form of an expectation :

Property 3b : We may evaluate the information content of a lottery

as an expected value over the possible outcomes .

We shall now show that these properties define a specific measure

of uncertainty, unique up to a multiplicative constant . The two parts

of property 3 essentially determine the form of the uncertainty measure

H .

Let us consider the simplest case, N = 2 . We require that

= 1, or, equivalently, p2 = 1 - p l . Suppose the first outcome

occurs, then relative to the original lottery we have gained an

amount of information I1 . If A2 occurs, we gain an amount of infor-

mation I2 . 1
1

and 12 are now completely arbitrary functions ; they

represent the amount by which our "ignorance" has been diminished by

the resolution of the uncertainty expressed in the lottery . Before it

=is known whether A1 or A2 occurred, then, the expected decrease in
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"ignorance" is just the quantity we shall define as H in keeping with

the expectation property that we have assumed :

H(p1 ,p2 ) = pi11 + p2 12

Since and p2 are related by p2 = 1 - pl , and since H is

.yrnmetric in its arguments by property 1, 1
1

and I2 must be the

same function :

H(pl , l- pl ) = p111(p1) + ( 1-p1)I2( 1- p1)

(3 .1)

= p1I(pl) + (1-pi )I( 1- p1 )

because in the simple N = 2 case, the probability distribution has

only one free parameter, which we may take as p 1 .

Now let us consider a more complicated lottery with three distinct

outcomes, Al , A2 , A3 . From the expectation property, we can write

H(p1

	

111(pl ,p2 ,p3 ) + p2 I2 (pl ,p2 ,p3 )

+ p313 (pl,p2 ,p3 ) •

But if A 1 occurs, the relative probabilities of A 2 , A 3 become

only on Pi
and 1 - p1 , or I

l

	

11(pl) .

I i , I2 , and 1
3

should be the same function, so we can drop the

subscripts :

H(p1 ,p2 ,p3 ) = p1I(p1 ) ± p2 1(p ) + p3 I(p3 ) •

	

(3 .3)
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(3 .2)

irrelevant . It should not matter whether these events are considered

separately or together as the complement of A l ; Il should depend

Property 1 implies that



We can then interpret the expectation property (3b) as follows .

An "information" random variable is defined on the outcome space by

the function I ; this is an unusual random variable in that its value

depends on the probability measure attached to the individual outcomes .

The function H is simply the expected value of this random variable .

The consistency requirement (property 3a) for the evaluation of

compound lotteries determines the form of I . Consider the following

equivalent lotteries having three possible outcomes :

Simple Lottery

A3

Figure 3 .2 : Equivalent Lotteries

Suppose that we learn the result of the first chance node in the

compound lottery, but not the second . From our calculations on the

lottery with two outcomes, the expected gain in information is

25
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H(p1 ,1-p1 ) = p1I(p1 ) + (1-Pl )I(l-P1 ) (3 •i )

Information from the second chance node will only be relevant if

does not occur, and the probability that A 1 does not occur is

1 - p . . From considering the simple lottery we see from equation

(5 .3) that the expected gain in information from resolving the uncer-

tainty at both chance nodes is

H(Pl ,P2 ,P3 ) = p11(p1) + p21(p2 ) + P3I(P3 )

Pi
I(P1 ) + (1-p1 )I(l-P1 )

+ ( 1-P1) 1
P2p1

I(p2 ) + 1
P3p1

I(p3 ) - I(1-p1 )

= H(p ( 1- pl ) E	 P2
1-	P1 (I(p2) - I(1-P1 ))

+ 1
P3

p1
(I(p3) - I(l-p1 ))

	

(3 .5)

since 1 - p1 = p2 + p3 . We see that the consistency requirement (3a)

that the information measure should not depend on whether the uncertainty

is resolved all. at once or in several stages dictates that the infor-

mation measure should have an additive form . The first term in the

sum represents the expected gain in information from the first chance

node, and the second term represents the expected gain in information

a -: the second chance node multiplied by the probability that this node

1l be reached . The second chance node gives us the outcome A 2

with probability p2/(1-p1 ) and the outcome A3 with probability

p_,/(_1-p 1 ), and using the result (3 .1) for a two-outcome lottery,

the expected gain in information at this node must be
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r

p2

	

p3

	

_

	

p2

	

p2	p3	p		
(3.6)H

1-p1 ' 1-p1

	

1-p1 I1-p1 +
1
-p1

	
-p1

Comparing this result to (3 .5), we find that for these two expressions

to be consistent, we require

I(p2 ) - I(1-pl )

I(p2) = I(l-p1 )

The solution to this functional equation for arbitrary p1 , p2 is

I(p) = - k log p

where k is conventionally taken to be positive so that 1(p) is

taken to be an increasing function of 1 - p .

	

This convention corres-

ponds to the intuitive notion that the more probable we think it is

that an event will not occur, the more information we obtain if it

does occur .

Using this result for I(p), we have from (3 .3) that the infor-

mation measure is

N
H(pl , . . , I N) _ - k

	

pi log pi

	

( 3.8)
i=l

where k is an arbitrary constant, equivalent to choosing a particular

base for the logarithms .

	

Our derivation has been for the case N = 3,
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I(L -

pl

(3 .7)

Details of the solution may be found, for example, in Cox [9 ),
gyp . 37-8 .

-x
We shall use natural logarithms unless otherwise specified .



but it is obvious that by induction we could establish the result for

arbitrary N. The information measure of a discrete probability dis-

tribution specified by expression (3 .8) is called the entropy .

The above argument, based in part on a discussion in Feinstein

[16], is the reverse of the axiomatic derivation as given originally

by Shannon [781 and with some slight modifications by others (Jaynes

[33], [351, Khinchin [45], Feinstein [161) . In these derivations the

additive property of entropy is taken to be the fundamental assumption

rather than the consistency requirement (3a) and the expectation property

(3b) . Besides properties (0), (1), and (2) an additivity property is

required : The information measure of a compound lottery is obtained

by adding the information measure at the first node to the sum of the

products of the information measures of each successor node and the

probability of the branch leading to that node . Suppose we can form

a compound lottery with two or more chance nodes by grouping m i

outcomes together and summing the corresponding probabilities q ij

to get the probability pi that one of these outcomes occurred . The

additivity assumption is

m .1
Property ++ : If p . _ 1, q . . > 0 for i e I where I contains

j=1

at least one integer from

H(P1 ,p2'

	

, q,1, . . ,
im.

i

qil

	

gimi l

+ iC
Pi P

i

	

Pi

Feinstein [161 shows that properties (0), (1), (2), and (4) determine
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, N), then

(3 .9)

, P N ) = H(p1 ,

	

, PN)



(` .8) . Other derivations have employed a fifth assumption which fixes

the sign of k and eliminates the need for some of the tortuous mathe-

matics of Feinstein's proof :

Property 5 : H(n, . . . , n) = A(n) is an increasing function

of n .

l'hannon's derivation of (3 .8) was of this latter form .

Fdiinchine [45] introduces the additivity assumption, property (4),

b ;r; saying it is "natural" that the information given by the resolution

oi'~.Lncertainty for two independent lotteries taken together to be the

Burn of the information given by the resolution of uncertainty for each

separately . Why not use some other binary operation such as multipli-

cation to combine the information from independent lotteries? We

could start a List of the properties we would like this binary operation

to have :

(L) commutative law : It does not matter which lottery is re-

solved first and which second .

(2) associative law : We should be able to group independent

lotteries arbitrarily .

(j) existence of identity element : the lottery with only one

(certain) outcome .

andd so forth . It is doubtful that a list could be drawn up that would

uriiquea_y specify addition as the required binary operation . The

crucial determining factor comes in only when we consider compound

J . ,>tteries . It is not clear that other binary operations than addition

could be extended to the dependent case in a meaningful way . Viewing



the expectation property (3b) rather than additivity as the fundamental

assumption seems to give more insight into why the information measure

should have the form (3 .8) .

We have now developed a measure of the information contained in

a probability distribution assigned to an outcome space of N discrete

.tates . The measure is totally divorced from the economic or decision-

m~Pking aspects of the problem. It is sensitive to the assumed outcome

space, and the splitting of any of the outcomes into two or more "sub-

states" will cause it to change .

How might this measure help us in assigning probabilistic structures

consistent with particular states of information? As an answer, let

us note that (3 .8) attains a unique maximum for the probability dis-

tribution pi = l/N, i = 1, . . . , N. We have discussed this distribu-

tion in the last section, and noted that it corresponded to a state

of information of "maximum ignorance," for which even a random relabeling

of the states in the outcome space leaves the state of information

unchanged . So if we look for the maximum of the entropy function--

the probability distribution that will correspond to the largest gain

ir: information when the uncertainty is resolved--we get the same answer

as before using the criterion of insufficient reason .

The entropy measure permits us to evaluate and compare the infor-

mation content of probability distributions . But since the form of

the entropy measure depends critically on the expectation property

(3b) or an equivalent additivity assumption, the methodology retains

an clement of arbitrariness that is uncomfortable . Any continuous

concave function that is symmetric in its arguments would satisfy
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properties (0), (1), and (2) . We have not established an intuitive

I.ustification other than simplicity for assuming the expectation pro-

perty . As a result we have not shown that the entropy measure provides

the only meaningful way to compare probabilistic structures . In fact,

in the context of a decision problem we clearly wish to use other

measures to evaluate information .

.' The Maximum Entropy Principle

Suppose we consider the following procedure for assigning proba-

bility distributions . Since we never wish to let assumptions enter

into our analysis without specifically introducing them, let us write

down eve_°ything we know about the probability distribution . If several

di.stribu -:ions are consistent with the information that we have specified,

we shall choose that distribution for which the entropy function (3 .8)

is largest . This criterion is the maximum entropy principle (Jaynes

[33]) .

The probability distribution to be assigned on the

basis of given information is that distribution whose

entropy function is greatest among all those distribu-

tions consistent with the information .

In order to use this principle we shall need an operational pro-

cedure for specifying information . This is not a simple matter, for

Given values assigned to each outcome, we shall wish to compare the
expected value of taking the best action for each probabilistic struc-
ture . This procedure leads to information value theory (Howard [291) .
The relation between entropy (3 .8) and more general concave functions
in information value theory has been explored by DeGroot [11] and
Marschak and Miyasawa L54] .
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cften information is only available in a vague form that would not appear

:suited for translation into quantitative terms . Jaynes [40], after

stating the basic desideratum that information should determine proba-

thiaity distributions, restricts his consideration to information that

Ile calls "testable ." A piece of information is -testable, if given any

proposed probability distribution, it is possible to determine unam-

bid-uously whether the information agrees with this distribution .

Testable information can be divided into two classes, information

concerned solely with the probabilistic structure (the probabilities

attached to points in the outcome space), and information concerning

values attached to the outcomes . Information in this second class

usually takes the form of an equation or inequality involving the ex-

pectation of a random variable . In order to have information of the

_econd class one must therefore have a random variable defined (by

a ;.;signing a numerical value to each point in the outcome space) .

Information in the first class can be stated as an equation or in-

equality involving only the probabilities assigned to outcome points ;

it is not necessary to define a random variable (although one might

wish to do so for reasons of convenience) .

The difference between these two types of information is subtle,

Lot it provides important insight to the applicability of the maximum

entropy principle . If we restrict our consideration to information

of the first class (which we shall call probability information), the

maximum entropy principle leads to rather trivial results . The second

of information (expectation information) is more interesting,

but _t; is harder to justify how such information might arise in a

practical situation .
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t us continue to restrict our attention to uncertain situations

witl :

	

possible outcomes . Testable information in the first class

(probability information) will be composed of equality or inequality

:statements such as the following :

+p2
+p3

= 0 .06

k2 p2

N = 0 .'7 where the

	

are a known set of non-negative

i=1
i'ipi

	

numbers for i = 1, . . . , N

(d) cos
-1(p3

) = 7r/4 .

Most procedures for encoding probability assignments develop

ra,irrts of the types (a) and (b) . The subject himself must assimi-

ate

	

relevant information and process it into testable form . Of

c .nzrse, it may be desirable to formalize this process by constructing

a mode :L that relates the probability assignment in question to other

uncertain factors, then encoding probability assignments for these .

Constraints of the type (c) might arise in using Bayes' Rule to

determine prior probabilities that correspond to a subject's posterior

probability assignments . More complicated equations involving the pi

such as (d) are difficult to justify intuitively but still constitute

testable information of the probability type .

When testable information has been provided in the form of such

probab=7Lity statements, application of the maximum entropy principle

constitutes the following optimization problem :
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Choose the probability distribution

N
- E pi log pi

	

(3 .11)
i=1

;subject to the constraints such as (a), (b), (c), (d) that represent

the testable information . In addition, of course, the constraints

Pi
>0, i = 1, .

	

, N

	

(3 .12)

N
pi =1

i=1

. , pN) that maximizes

are needed to insure that (p1 , . . . , pN) will be a probability dis-

tribution . This formulation is readily extended to include expectation

information as well, as we shall see in Chapter 5 .

Let us consider how this procedure might apply in a typical situ-

ation in which a prior distribution is being encoded . The subject is

asked a number of questions regarding his preferences between two

lotteries having the same prizes but different probabilistic structures .

(For example, see North f6o1 .) The answers determine equations of the

form (3 .10a,b) ; it is the encoding process that places

information into testable form .

The encoding process is typically continued until there are enough

equations to determine the distribution . In fact, more than this number

of equations are usually developed in order to have a check on the

subject's consistency . The optimization procedure implied by the prin-

ciple of maximum entropy is then trivial, because the constraints imply

that only one distribution (p l , . . . ) pN) is a feasible solution to

the optimization problem . For this frequently encountered case the
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principle of maximum entropy is consistent with the encoding procedure

but trivial. Maximizing any other function of the p i `s would lead

t ._, the same solution . If the subject has enough information that he

can express in testable form to specify a unique probability distri-

bution, there is no need to invoke the principle of maximum entropy .

The real gist of the encoding problem lies elsewhere : How does one

summarize information into testable form?

Now let us examine the other form of testable information, expec-

tation statements . It is this form of information that has been exten-

sively investigated by the advocates of the maximum entropy principle,

uut little attention has been devoted to the matter of how such infor-

mation might arise . Two possibilities suggest themselves : (1) The

expectation of a random variable may be known without being derived

from. probability statements about the individual outcomes . That is,

it i.s possible to know a priori the expectation of a random variable

without knowing its distribution function . (2) Knowledge of expec-

1;Fat .ons arises from a series of measurements of similar phenomena :

we are told an "average value" without having access to the measurements

of the individual instances .

It is this latter type of expectation information that appears

the examples in the literature (Jaynes [35], Chapter 4 ; the widget

problem : Jaynes L391, Tribus and Fitts [881) . Expectation knowledge

of the first type, i .e ., direct a priori knowledge of an expectation,

seems highly unlikely to arise except in situations where a great deal

known about the probability structure . The expectation is a summation

over the outcomes of a value attached to each outcome weighted by the

probability that the outcome occurs ; it is a derived rather than a
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*'undamental concept . Although the probability measure can in some

instances be derived from knowledge of expectations (e .g ., the charac-

teristic ±'unction) it is difficult to ascribe an intuitive meaning to

"expectation" except as the average of a large number of identical,

independent trials, i .e ., a long run average . In any other situation

it would seem preferable to encode information using the probability

measure directly .

We conclude, therefore, that the maximum entropy principle is not

very interesting except in the special case where we are dealing with

sequences of identical, independent experiments and our knowledge con-

cerns long-run experimental averages . Further, the foundation for the

,maximum entropy principle is not as strong as we might like, for neither

the assumption of additivity or the expectation property seems clearly

intuitive . We shall see in Chapter 5 that the difficulty may be resolved

by using the basic desideratum as a starting point rather than the

axiomatic derivation presented in this chapter .
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Chapter IV

THE MAXIMUM ENTROPY PRINClr'LE IN STATISTICAL MECHANICS :

A RE-EXAMINATION OF THE METHODS OF J . WILLARD GIBBS

Entropy considerations did not originate with Shannon's papers .

J . Willard Gibbs stated the maximum entropy principle nearly fifty

years earlier ([23], pp. 143-144) . In many ways Gibbs' development

of the entropy principle is more revealing than the contemporary argu-

ments discussed in the last section . The maximum entropy principle

may be derived as a direct consequence of the basic desideratum from

an invariance to randomization over time . This derivation provides

a foundation for statistical mechanics that eliminates any need for

an ergodic hypothesis that time averages are equal to expectations

over probability distributions . However, the development is so frag-

mentary that one wonders if Gibbs himself realized the full potential

of his methods .

	

Although the arguments to be presented in this section

are drawn from Gibbs' work, their synthesis as a derivation for the

maximum entropy principle does not appear to have been previously

noted .

+ .1 The Problem of Statistical Mechanics

An understanding of Gibbs' reasoning requires some background

on the problem in physics with which Gibbs was concerned . Newtonian

Jaynes [38] has suggested that Gibbs did not live long enough to
complete the formulation of his ideas .
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mechanics provided the foundation for the physics of the nineteenth

century . The philosophical consequence of this viewpoint was a belief

h a deterministic universe . Laplace [47] summarized the reasoning

through a clever artiface : a superior intellect, the "Laplace demon ."

hfodemon could calculate exactly what the future course of the universe

w ,:ozld be from Newton's laws, if he were given precise knowledge of the

positions and momenta of all particles at any one instant .

It is useful to note the relation of these ideas to Laplace's

conception of probability . Such determinism is incompatible with the

usual conception of games of chance . The outcome of a throw of the

dice s completely determined by the initial conditions ; it is a

i-:roblem in mechanics . If we use probability theory as a means of

reasoning about dice, there is no reason we should not use it to reason

about any other uncertain occurrences in the physical world. Probability

theory was for Laplace a means of making inferences about what is not

uowri but is assumed to be knowable .

The use of probability theory allowed Gibbs to sidestep the need

for the demon in applying Newton's laws to the large number of par-

t cles in a macroscopic system . This method allowed him to use the

w., of mechanics to provide a foundation for the empirical science

of thermodynamics . Gibbs'achievement has been acknowledged as one

of the great milestones in the history of science, even though the

details of his reasoning have been widely misunderstood . The elegance

ci' Giibbs' reasoning becomes apparent when we accept the determinism

the demon analogy and Laplace's interpretation of probability .

The concept of the ensemble is not an intrinsic part of the
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We shall now present a derivation of the maximum entropy principle

in statistical mechanics . From this maximum entropy principle virtually

the entire formalism of statistical mechanics may be easily derived

(Jaynes [33], [34], [36], [38] ; Tribus [82], [84]) . An outline of the

argument is as follows : Hamilton's equations are used to describe the

dynamic behavior of a system composed of n interacting particles .

The uncertainty in the initial conditions for these differential equa-

tions of motion is represented by a probability distribution . Liouville's

theorem (Gibbs' principle of conservation of probability of phase)

provides an important characterization of the evolution of this proba-

bility distribution over time ; a simple corollary to Liouville's

theorem shows that the entropy functional of this probability distri-

bution is constant in time . We then consider the notion of statistical

equilibrium which we shall formulate in terms of the basic desideratum :

The probability distribution on the initial conditions shall be invariant

to a randomization of the time at which these initial conditions are

cetermi.ned. A well-known inequality relation for the entropy functional

provides the crucial step in the reasoning : if the probability

argument . Gibbs regarded the ensemble as a means of formalizing the
use of probability, and he went to some effort to demonstrate that the
fundamental relation of conservation of probability of phase (Liouville's
theorem) can be derived without reference to an ensemble : ([23], p . 17)
"The application of this principle (conservation of probability of phase)
is not limited to cases in which there is a formal and explicit refer-
ence to an ensemble of systems . Yet the conception of such an ensemble
may serve to give precision to notions of probability . It is in fact
customary in the discussion of probability to describe anything which
Is imperfectly known as something taken at random from a great number
>f things which are completely described ." For the sake of clarity
we shall avoid the use of ensembles until the next chapter, where we
.,hall relate them to de Finetti's work on exchangeable sequences .
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distribution on the initial conditions is chosen to maximize the entropy

functional subject to constraints on the constants of motion, this

distribution will remain stationary over time . Gibbs' canonical and

microcanonical distributions can be derived from particularly simple

constraints on the constants of motion . By this method the entire

framework of Gibbs' statistical mechanics is built up from the basic

desideratum by means of an invariance principle . We shall now present

the derivation in detail .

We shall consider a system composed of n particles governed

l:by the laws of classical mechanics . The particles may interact through

forces that depend on the positions of the particles, but not their

velocities . External forces may also be considered ; we shall not do

so here . Hamilton's equations of motion will be used as the formulation

of the laws of classical mechanics .

	

We shall assume that, the location

the particles is specified by a set of 3n generalized co-ordinates

q 1' " , q3 n • The forces affecting the particles

a Hamiltonian. function

	

9(pl , . . . , p3n )gl, . . . , g3n,t) where the

p) are the canonical momenta conjugate to the position co-ordinates

The dynamic behavior of the system is then given by Hamilton's

equations :

dpi

dt = pi =

dqi
dt - qi -

are summarized in

The reader who is not familiar with the Hamilton formulation may
wish to consult a standard text on mechanics, such as Goldstein [26] .
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We may represent the state of the system as a point in a 6n

dimensional phase space I' whose co-ordinates are

c,1, . . .,g3n = q.

q(t ) at time
0

Hamilton's equations,

over time as tracting

Since the solution of

Given that the system is initially

t
0 )

p , . . .,p3n = p,

in a state p(t
0
),

its motion for all other time is determined by

and we may think of the behavior of the system

out a trajectory p(t), q(t) in phase space .

Hamilton's equations is unique, these trajectories

can never cross each other . A trajectory in phase space must be either

a closed curve or a curve that never intersects itself .

Let us consider a volume n of phase space at a time t . Consider

an arbitrary point p(t), q(t) in ) : at another time t' the corres-

ponding location of the system in phase space will be p'(t'), q ' (t ' ) .

Let us look at the transformation of an infinitesimal volume element

in going from the representation at time t to the representation at

time t' :

dp1
.
.-

dp3n dql .
.-

dg3n = Jdpl . . . dp3 n dql . . .
dg5n

where J is the Jacobian determinant of the transformation . It is

S straightforward matter to show from Hamilton's equations of motion

that this determinant is constant in time and equal to one . The proof

.s given in Gibbs [231, pp . 14-15, or alternatively in many modern

texts (e .g ., Goldstein [26]) . Since trajectories cannot cross, the

s=t of points p(t), q(t) on boundary of C will transform to a

s;et of points p'(t'), q'(t') that bound a new volume S2' in phase

space . The fact that volume elements are invariant under the trans-

formation from the t representation to the t' representation
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means that SZ and St' must have equal volumes in phase space .

4 .2 Probability Distributions onInitialConditions ;Liouville's

Theorem

Let us now consider the situation in which the initial conditions

are not known. At a particular time t we are uncertain about the

location of the system in phase space . We might hypothesize the exis-

tence of a "demonic experiment" : a device that can measure simultan-

eously the 3n position co-ordinates and the 3n momenta needed to

locate the system exactly in phase space . We may assign a probability

distribution to the outcome of such an experiment performed at a time

t;

	

P(p,q,t0
) will denote the probability that the system is in an

infinitesimal volume in phase space containing the point p, q at

time to . We shall assume that this probability density function

exists and is continuous as a function of p, q .

From the transformations in phase space determined. by Hamilton's

equations we can determine the probability distribution over phase

space at any arbitrary time t, given the probability distribution

at a particular time t0 . We have established that differential volume

elements in phase space are invariant under such transformations .

Consider the probability that the system will be found in a given

volume Q0 in phase space at time to . This is

J P(p,gtt0)dp1 .-
dp3ndg1 .

.- dg3n .

	

( 4 .3)
S2
0

Consider another time t, and let P be the volume in phase space

bounded by the transformed points on the surface of n0 . Since the
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trajectories cannot cross, if the system is in G 0 at to it, will

also be in n at t, and conversely . Hence :

0

T'(p(t), 1(t))

f P(p,q,t0)dpl . . . dq
n

=

	

P(p,q,t)dp . . . dq' r

	

( 4 .4 )3

	

3

Let us take n very small . Then P is locally constant and may be

taken outside the integration . The integrals over the volume are equal,

so we find that the probability density function

as the probability density function .

43

P(,q,t)

p(p,q)t)

is constant

in time for points in phase space that lie along the trajectory deter-

rr.ined by Hamilton's equations . This result was called by Gibbs the

principle of conservation of probability of phase, and by modern authors

Liouville's Theorem .

	

From now on we shall use this result and write

will

mean the probability distribution over fixed co-ordinates in phase

space as a function of time .

Information about the state of the n particle system is often

riot in the form of knowledge about the generalized co-ordinates and

momenta, but rather about quantities that are constants of the motion .

The strength of the Hamilton formulation of mechanics is that it lends

itself to changes of variables, and we can transform to a new set of

co-ordinates for phase space that include these constants of the motion .

For a dynamical system of n interacting particles obeying

Hamilton's equations there will be in general_ 6n constants of the

x
Liouville's Theorem is often stated in terms of a density of points

.n an ensemble in phase space rather than a probability density, but
Gibbs pointed out, the two formulations are conceptually equivalent .



motion . 6n - 1 of these specify a trajectory in phase space while

the remaining one locates the system on the trajectory at a particular

time . Let us denote these constants as

The position of the system in phase space p(t), q(t) can be

specified as a function of these constants c 1 , . .
'9

c6t, and the

t _me t

p(t) = p(cl,
. . . , c6n ,t)

c l , . . . , c6n
*

q(t) = q(cl' . . . , c 6n ,t)

These expressions represent the solution of the 6n Hamilton differ-

ential equations of motion in terms of the 6n constants of integration

for these equations and the independent variable t . We can now consider

a transformation from the original phase space F to a new 6n dimen-

t onal space whose co-ordinates are c 1 , . . . , c6n . A differential

volume element in the new space may be related to a volume element in

the old space in the usual way using the Jacobian determinant of the

transformation equations (4 .5) :

a(pl, . . .)p3n,g1,_ q3n) dc
1

	

dc6n . (4 .6)
3n

dp dq . . . dq
1

	

3n 1

	

3n =
	

c)(cl, . . .,c6n)

since volume elements in phase space remain constant as the system

evolves through time, and since a system having constants of motion

within specified limits will remain within these limits, we conclude

that the Jacobian determinant

a(pi ) . . . , pan , ql , . . . ,

a(c

must be constant in time .

(4-5)
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The implication of this change of variabl .e,~ on Liouville's theorem

was clearly evident to Gibbs, and we shall state the following general

version of Liouville's theorem in Gibbs' own words ([23], p . 18) :

When the differential equations of motion are exactly
known, but the constants of the integral equations
imperfectly determined, the coefficient of probability
of any phase at any time is equal to the coefficient
of probability of the corresponding phase at any
other time . By corresponding phases are meant those
which are calculated for different times from the
same values of the arbitrary constants of the integral
equations .

By coefficient of probability of phase Gibbs meant the probability

density function P(p,q) in phase space . For "phase" read phase

space, and for "constants of the integral equations" read constants

of integration .

Only a few of the constants of motion will generally be of interest :

those that correspond to the conservation laws of physics and are

therefore macroscopically observable . The other constants will be

highly variable with the precise location of the system in phase space

at a reference instant t
0

. They are riot susceptible to reproducible

measurement, and typically there is no way to learn their values without

the assistance of Laplace's demon to solve Hamilton's equations . The

constant of the motion that is of greatest interest in statistical

mechanics is the energy of the system . Other constants that are

occasionally considered are the components of total angular momentum

(("bbs [23], p . 38) .

Let us assume that there exist I known functions e1, e2
)'

. . . ,

of the generalized co-ordinates and momenta p(t), q(t) whose values

remain constant as the system evolves over time . The functions 0 .
i
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transform the specification of initial conditions from the phase space

(t), q(t)

; 1 , . . . ,

equations .

to a new set of variables in which the first I variables,

c I, do not change over time as a consequence of Hamilton's

© i (P(t),9t)) = ci ,

	

i = 1, 2, . . . , I

The quantities c i are presumed to be measurable, but lack of infor-

mation will cause these values to be uncertain . We shall suppose

that knowledge about the constants c . may be encoded as a probability

distribution over the possible values of the c i that would result

from a measurement of infinite precision . This distribution can be

represented by the joint cumulative distribution function

F(c L ,c2 , . . . , cI ) . We now wish to show the following convexity

property :

Lemma I : Suppose P( p,q,t ) and

	

) are two distributions
0

	

0

over phase space at t 0 that are consistent with a given probability

distribution F(cl , . . . , CI ) on the constants of motion

	

1

	

I

That is, the integral of P(p,q,t 0 ) over those regions of phase space

such that 0i (p(t0 ),q(t0 )l < c i , for i = 1, . . . , I is equal to

F(c .1 , . . . , c 1 ) for all possible values of cL,
'" , cI

:

J P(p(t ),q(t ),t ) dp

	

dp dq • • • dq

	

= F(c ,J

	

0

	

0 0 1

	

3n 1

	

3n

	

1

such that e .(p,q) < ci , i = 1, . . .,I
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, cI)

	

(4 .7)

The same relation (4 .7) is also assumed to hold for the distribution

.r
P'(p,q,t0) . Then the distribution formed by taking a positive linear



combination

P* (p,q,to ) = aP(p,q,t o ) + (l-a)PT(P,q,to)

	

0 < a < 1

	

(4.8)

all satisfies the probability constraint (4 .7) for all possible values

c ,

	

I of the constants of motion . Further, the distributions

P, P', and P* satisfy the probability constraint (4 .7) for all

times t .

Proof : The fact that P- satisfies (4 .7) is a trivial consequence

of the fact that integration over phase space is a linear operation .

The (distributions P, P', P* satisfy (4 .7) for all times t, given

that they satisfy (4 .7) at to , since (4 .7) is equivalent to

Id
- L

	

cI .

	

°°
. .

	

P(P(t),q(t))
W

	

Ifo o

	

°°

	

-00

6(P1(t), . . .,p3n(t),q.1(t), . . .,g3n(t))

	 (	 dcl . .* dc ldcl+l . . . dc 6ri
a cl, . . .,c6n)

F(cl , . . . , c I ) .

F( ,'q) and the Jacobian determinant are constant in time a,; p(t),

q(t) move in accordance with Hamilton's equations, so if (4 .9), hence

(4 .'7) is satisfied at one time t
0

, it is satisfied for all times t .

Lemma 2 : Suppose that we have a set of probability distributions

P" ' (p,q) over phase space indexed by a parameter x, each of which

satisfies (4 .7) at a specific time t o . Suppose Cp(x) is a probability

di t.ribution over the values of the parameter x . Then the composite

(4 .9)
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di,itribution

(p(t),q(t)) = f fx(~?(t),q.(t))dCP(x)

	

(~+ .lo)
x

; ;at i_sfies (4 . 7) for all times t .

Proof : The proof follows immediately from the fact that the integratior :s

aver x and over phase space can be interchanged, and . then the appli-

cation of Liouville's theorem as in lemma 1 .

In general the probability density P(pP(-(t),-q(t)) that the sys

wi .l be found in a fixed region of phase space is not constant, but

changes in time . The exceptional situation in which P(p(t),q(t))

is constant in time for any fixed point in phase space was defined

:; ; a bb .:> to be statistical equilibrium . For any arbitrary volume

z' .a .xed.in phase space, the probability that the system will enter the

vo:3.ume in a time Lit is equal to the probability that the system will

Leave h2 in At . The meaning of Liouville's theorem is that

I(p(t,),q(t)) is constant in time for a region moving, through phase

,,puce according to Hamilton's equations even if one does not have

statistical equilibrium .

Can we summarize Liouville's theorem without relying on a function

defined over 6n dimensional phase space? Supposing we take the

integral of P(p,q) over phase space ; this integral. must be unity

P(p,q) is to be a probability density so we learn nothing . But

-'oppose we consider the natural logarithm :

4
Fubini's theorem .



TI(P(t),9(t)) = -log P(P(t),-(t)) .

	

( 4 .ll)

This function will be constant for points moving in phase space according

to Hamilton's equations . Furthermore, consider the expectation of

rj
y

(1,t) over phase space, which is the entropy functional

H(P,t) = fP((t),(t))

	

Pqlog P(p(t),q(t))dp, . .- dg3n .

	

(4 .12)

B th P and r) are constant and the volume element remains constant

fur each point in phase space when we transform according to Hamilton's

equations, and we come to the important consequence of Li-ouville's

theorem :

G'bb H-Theorem : The function

II(P,t

	

-

	

P(p(t),q(t)) log P(P(t),q(t))dpI . .* dg3n

	

(4 .13)
P

constant over time . This result is stated by Gibbs [23], p . 144 .

Gi_bbs associated H with the entropy of a thermodynamic system,

and Later authors have criticized him severely on this point : "Entropy

aunt increase in an irreversible thermodynamic process, so H cannot

to the entropy ." For a discussion of the relation between the Gibbs

function, the thermodynamic entropy, and the Second Law of Thermo-

evra.mics, the reader is referred to Jaynes [38] .

	

Henceforth we shall

ri=fer to the 11 function as the entropy functional of the probability

.rtribution over phase space .

The Szilard articles that appeared in Zeitschrift fix Physik in the
also yield considerable insight into the relation between the

t .wo }rinds of entropy . Summaries in English are found in [i4] and [89] .
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Statistical Equilibrium and the Maximum Entropy Principle

We now use the invariance of H over time to arrive at a powerful

characterization of statistical equilibrium . We shall need the following

lemma, which appears in Gibbs [231 as Theorem VIII, p . 135 .

Lemma3 : Let P1 , P2 , . . . be a set of probability distributions over

phase space . Suppose we consider a random mechanism where the ith

distribution P,
i

is chosen with probability cp(i) . Denote the composite

distribution over phase space

Picp (i) = Po

then the entropy functions of these distributions obey the following

inequality relation

H(P0 ) > F, H(P .)cp(i)

	

(4 .15)
i

with equality holding if and only if P o = Pi identically for all

2, . . .

?roof : This lemma is often stated as "the conditional entropy is never

greater than the unconditional entropy ." (Shannon [78], p . 22, Khinchin

[45J, p . 36, Feinstein [16], p . 15 .) The proof depends on the fact

,hat f(x) = x log x is a strictly convex function . The version used

here is that given by Gibbs [231, pp . 136-7 . (Another version is

found, in Chapter 5

Consider the function

preceding equation
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(4 .14)

Q i = Qi (p,q) = Pi log Pi - Pi log Po - P1 + Po .

	

(7 .16)



We shall see that it is always positive except where Pi = P0 . Con-

s .der any point p q in phase space ; thel

	

n Pi and P0
may be

regarded as any positive numbers . If P0 is held constant and P i

varied, we have

i
dP . =

log P

	

log P
0

1

4 i and Qi
/dT

1
vanish for P P

.,
and the second derivative

in everywhere positive . Hence must be positive if P j
/ P0 .

Further,

T(i)Qi
> 0

unless P . = P

	

for all i . Since
1

	

0

TON =!I: T(i) I Pi log Pi - Pi log Po - Pi + P0 1

P(i)Pi log Pi - Po log Po > 0

we have shown that for any point p, q in phase space,

""

	

Pj '") - P
0I'M log POOT >

	

T(i)Pi (p,q ) log

	

q)

with equality only if P0 = Pi
for all i . Integrating over phase

;_,pace proves the lemma . (strictly speaking the equality holds even

q

	

p,q)jr P
0V& / P i

d
2
Q i

	

-1
= (Pi )dp .1

providing the latter occurs only on sets of

neasure zero . We ignore such technicalities .)
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There is an immediate corollary to this result .

Lemma 4 : The distribution that maximizes the entropy functional H

subject to any set of probability constraints of the form (4 .7) is

unique .

Proof : Suppose the contrary : there exist two distinct distributions

P- and P2 that maximize the entropy functional on some outcome

space, subject to the constraints .

Consider the composite distribution UP
1

+ (1-a)P2 , where

0

	

1 . By lemma 1 if P1 , P2 satisfy the constraints, UP, +

satisfies the constraints . But by lemma 3 we have

H(aP1 + (1-a)P2 ) > aH(P1) + (1-a)H(P2 )

Hfnce Pl and P2 cannot maximize the entropy functional H subject

t the given probability constraints unless P 1 = P2 identically .

We are now ready to derive the main result of this section . The

argument is suggested by Gibbs in the last paragraph, [23], p . 151,

b'at it is not clear if Gibbs intended the passage to be the justification

for the maximum entropy principle or simply a deduction of the conse-

quences of lemma 3 .

Consider a system in equilibrium . We shall characterize equilibrium

.r the fo ll owing way : our state of information regarding the outcome of

a demonic experiment that would locate the system exactly in phase space

the same, whether we

(1) perform the experiment at a fixed time t o
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(2) perform the experiment at a time selected randomly from a

set t1, t2 ,

We now apply the basic desideratum : if the state of information is

the same for both situations (1) and (2), we should assign the same

distribution in phase space to the outcome of the experiment for both

situations .

Suppose we assign the distribution that maximizes the entropy

functional, while being consistent with the probabilistic information

that we have about the constants of the motion . Supposing situation

(1), this distribution P(p,q,t0 ) will apply for the demonic experiment

performed at a fixed time t
0

. Now let us compare this distribution

with situation (2) . Suppose the experiment will be performed at a time

with probability cp(i)

P(p,q,ti ) for i = 1 2

	

Because of the Gibbs' H theorem

each of these distributions will have the same entropy as P(p,q,t o ) .

The P(p,q,ti ) also satisfy the same probabilistic constraints on

the constants of the motion from the general version of Liouville's

theorem . Hence each must be a maximum entropy distribution . By lemma

they must be the same distribution, so we have shown that the maximum

entropy distribution is a constant over time .

Supposing we assign a distribution

We use Hamilton's equations to derive

maximize the functional H subject to satisfying a set of probabilistic

relations on the constants of motion . The Gibbs' H theorem still

_ids, so

H(P(p,q,ti)) = H(P(P,q,t0))

	

(x+ .18)
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fjr i. = 1, 2, . . . . But consider the composite distribution :

B.,j

	

lemma we have

H(P* (P,q)) > ) cP(i)H(P(p,q,ti))
i

with equality holding only if

= P*(P,q)

P*(p,q) = P(P,q,t •)

	

(4.21)
i

for all i . Now we have no reason to require that equality holds ;

the composite distribution may give a larger value to the H func-

tional while still satisfying the constraints on the constants of

motion . In this case we may have different d.°_stributions P(p,q,t i )

for each i . But now we invoke the basic desideratum : p*(p,q) has

a higher value of H than P(p,q,t 0 ), yet these two probability

distributions must be identical since they correspond to identical

states of information . Only in the case in which P(p,q,t o ) = P(p,q,ti )

for all i (and recall that the t i can be chosen arbitrarily) do we

have p*(p,q) = P(p,q,to ) as required by the basic desideratum .

We have now achieved a fundamental insight into statistical equilib-

rium . By invoking an invariance to randomization over time, we find

, .at the probability distribution over phase space has to be constant

time, which is Gibbs' definition of statistical. equilibrium . But

more important, we have learned how to generate an immense class of

distributions that have the property that they remain constant over

(4 .19)

(4 .20)



time : we choose them to have maximum entropy subject to probabilistic

constraints on the constants of the motion .

Particularly simple forms for these constraints lead to the well-

known distributions in statistical mechanics . If the only probabilistic

constraint is on the total energy of the system, and it is presumed

that this energy is precisely known, the resulting distribution is called

rnicrocanonical . The canonical distribution results from maximization

of the entropy functional subject to a constraint on the expected

value of the energy over phase space . We shall see how to handle this

expected value constraint in the next chapter .

The formulation of statistical mechanics that has just been pre-

;rented avoids the need for the usual ergodic hypothesis equating

expectations over phase space with the time averages that are actually

measured in the laboratory . By invoking the basic desideratum for a

system in equilibrium we were able to develop a probability distribution

over phase space that reflected our knowledge about the state of the

:;ystem . Hamilton's equations are deterministic, and

conditions are specified, the behavior of the system can be (in principle)

predicted for all time . Liouville's theorem and. its corollary, the

GLbbs'H theorem, are direct consequences of the fact that the Hamilton's

equations governing the dynamic evolution of the system introduce no

element of uncertainty . It is in fact obvious that the stochastic

process constructed by observing the system over time is not metrically

transitive and therefore the usual. proof of the ergodic theorem does

riot hold (Loeve [51], pp . 423-4) .

For example, see f31], p . 203, and L77], p . 9-
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~- .4 Relation to the Criterion of Insufficient Reason

The preceding material indicates the power and subtlety of the

entropy concept . Yet the probability distributions having maximum

entropy subject to probability assignments of the type (4-7) to the

constants of motion have a simple characterization according to the

criterion of insufficient reason . This insight results from a theorem

clue to Gibbs (Chapter XI, theorem IV [231, p . 132) .

Theorem : Suppose probability assignments of the form (4 .7) are given

on the constants of motion c l,

	

cI . The probability distribution

over phase space having maximum entropy while satisfying this infor-

mation constraint is the one for which P(p,q) is a function only

of the constants of motion

	

cl .

Proof : We shall use Gibbs' method of proof, which is essentially a

calculus of variations argument .

Let T) = ~(c l , . . . c I ) _ - log P(p,q log P(cl ,

be a function that depends on the location p, q in phase space only

through the constants of motion 0 i ( p,q) = c i , i = 1, . . . , I . Let

b be an arbitrary function of phase space, subject only to the con-

di.tions that the probability distribution P* over phase space corres-

r_,onding to T1 + 671 :

-rJ C

	

,cI)-S~(p,q)
P*(p,9) = e

	

(4.22)

satisfies the following conditions . First, it is a probability dis-

tribution, and second, it satisfies the information constraint (4 .7) .
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Writing these conditions out,

-i(c 1) . . .,c1)-8r1(p,q)
e

	

dp1 . .* dg 3n =r such that

	

such that

<,

	

e (p,q)

	

c + Ac .

	

c . < e 1.(p,q) < c1. + Ac .
1 - 1

	

1

	

1-

	

-

	

1

e

;since

-i(c1, . . .,cl)-s71(P~1)
e

	

dpl • •

i = l, . . . , I

d

	

d
dc1

	

dcI F(c1 , ' .

both sides of (4 .24) by it to obtain

Now we wish to prove that P = e

This is equivalent to

(Tj+8j) e-~ -"dp1 . . .r

-11

dq

	

=
1

e-~(cl, . . .,c1)
= 1

	

(4 .23)3n
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c I )

r

r

	

-,~(c1 , . .

i = l, . . . , I

dg3n

r~(c1 , . . . , c 1 ) is approximately constant, we can multiply

(4 .24)

~e-rI-8r~dpl

	

dg3n =

	

~e - ~dpl . . . dg 3n

	

(4 .25)r such that

	

r such that

c . < e .1 (p,q) < c .1 + Dc .1

	

1c . < e .(p,q) < c 1. + Ac .

i = l, . . . , I i=l,

1r

rJ bile- Tl -SrIdp1

	

dg 3n < 0

, I

is the maximum entropy distribution .

dg3n <

	

ry[edp-~

with equality holding only for 8~ = 0 for all points p, q

space . Integrating (4 .25) over all values of c 1

that (4 .26)

	

equivalent to

dg3n

	

(4 .26)

in phase

cI , we see

(4 .27)



'Qsing (4 .23), .

dg
3n

P

p, (i in phase space,

=
f

e-"(8r~e-8T) - 1 + e-''") dp1

	

dg3n .
P

Consider the function f(x) = xeX - ex + 1 . Since f'(x) = xeX ,

-J(x) attains a unique minimum of zero at x = 0 . Hence at any point

8r~e
-g
~ - 1 + e

-
" = -f (-8n)

	

(4 .29)

must be negative unless 8rI = 0 . Therefore the integrand in (4 .28)

Ls everywhere non-positive, and the integral can only be zero if

8r~(p,q) = 0 for all points p, q in phase space

The insight that the theorem gives is the following . We have a

probability distribution F(c l, . . . , cI ) on the constants of motion

and a series of equations

ei ( p,q) = c i
i = l, . . . , I

relating these constants to positions in phase space . We assign a

distribution over phase space such that a change of variables from

p, q to c l , . . . , c I gives us the distribution F(c l , . . . , c I ),

(4 .28)

and such that all points p, q that generate the same set of values

f'or the constants of the motion are equally probable . We could have

)btained this result directly by using the criterion of insufficient

reason . We specify information on the constants c 1

	

, cI, and
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assign a uniform distribution over phase space for the remaining

br , - I constants of the motion . The power of the method in statis-

tical mechanics depends on the fact that typically there is only one

constant of the motion (energy) and the dimensionality of phase space,

Err, is a huge number, of the order of 10 .
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Chapter V

STATISTICAL ENSEMBLES AND THE MAXIMUM ENTROPY PRINCIPLE

In Chapter 3 we examined the maximum entropy principle for assigning

probability distributions and found that it lacked an intuitive concep-

tual foundation . Further, it did not lead to significant insight when

information was provided in the form of probability statements ; the

proponents of this principle have introduced information in the form

of statements about the expectation of a random variable . We argued

that only when these expectations were equivalent to long run averages

did such statements have an intuitive meaning .

Chapter 4 we examined how the maximum entropy principle arises

in statistical mechanics as a consequence of statistical equilibrium .

We noted that a probability distribution over phase space that maximizes

entropy subject to probabilistic constraints on a subset of the constants

of motion is equivalent to a uniform distribution over the constants

of motion that do not enter into these constraints . If the energy of

the system is known exactly, the resulting distribution is the micro-

canonical distribution . The canonical or Boltzmann distribution corres-

ponds to knowledge of the ensemble average of the energy . We do not

yet know how to deal with this kind of information .

The next two chapters will be devoted to resolving these issues

that have been raised in earlier chapters : (1) a better justification

for the maximum entropy principle, and (2) a means of treating expectation

constraints . We shall turn our attention to situations in which repeated

6o



indistinguishable experiments are considered . The probabilities of

classical statistics exist only in repetitive situations where they are

defined to be equal to long run frequencies . Our Bayesian viewpoint

on probability coincides with this classical view in the limit where

the long run frequencies are known . The long run frequency distribution

. ., generally not known; rather we are uncertain about it . It is this

uncertainty that motivates our work in the next two chapters . Inferring

which long run frequency distribution is appropriate for a given repeti-

tive situation is the basic problem with which we shall be concerned .

We shall begin by formalizing the notion of repeated, indistinguish-

able experimental trials ; following Gibbs we shall call a collection of

:repeated, indistinguishable experiments an ensemble . We may relate an

ensemble to the basic desideratum through de Finetti's exchangeability

concept . Our state of information about a sequence of experiments is

unchanged by any arbitrary permutation in the order of the experiments .

An ensemble is then a collection of exchangeable trials, and we shall

use the terms interchangeably . A theorem due to de Finetti formalizes

the relation between exchangeable sequences and long run frequency

distributions .

The remainder of the chapter builds up the mathematical proofs

necessary to understand the maximum entropy principle and . the significance

of information in the form of ensemble averages . In Chapter 6 we shall

swnmarize the implications of these results and examine some possible

extensions .

6 1 .



5 .1 Statistical Ensembles as Exchangeable Sequences

The concept of an ensemble goes back to the earliest writings

on probability . These writings concerned games of chance, for which

the notion of identical, independent trials is intuitively obvious .

The objective of probability theory was to make deductions about the

outcome of these games of chance from the probability law of an under-

lying random mechanism, such as dice or cards .

The notion of identical, non-interacting experiments might well

have been what Gibbs had in mind in postulating an ensemble of systems

a-, the basis for statistical mechanics : Gibbs defines an ensemble

cii the opening page of his preface as follows ([23], p . vii) :

We may imagine a great number of systems of the
same nature, but differing in the configurations
and velocities which they have at a given instant,
and differing not merely :infinitesimally, but it
may be so as to embrace every conceivable combi-
nation of configuration and velocities .

It seems possible that Gibbs was thinking of a great many "demonic

experiments" to measure the configurations and velocities of the par-

ti.cles composing the system . Systems "of the same nature" would imply

that these experiments are run on systems that are indistinguishable

to the physicist in terms of the (macroscopic) measurements that he is

chin to make .

The interpretation expressed above is not the one currently pre-

vailing in physics . Gibbs' definition is taken quite literally : An

ensemble is viewed as a large number of "mental copies" of the real

physical system under consideration ([31],L77]) . These "copies" are

to occupy every conceivable position in phase space consistent with
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the macroscopic "state" of the system. We showed in the last section

that many of Gibbs' results could be developed by using a probability

distribution on the initial conditions (i .e ., the position in phase

space at time to ) instead of the "density function of the ensemble

:in phase space" that is usually employed in deriving these results .

This prevailing interpretation of ensemble leads to many conceptual

problems . The Gibbs ensemble has no physical reality, but physicists

have treated it as if it did . The basis for choosing an ensemble dis-

tribution, the meaning of an "ensemble average," and the need for an

ergodic hypothesis are points that have bothered most writers on sta-

tistical mechanics . Typically these difficulties are passed over with

a.r, apology and a pragmatic justification : Statistical mechanics is

useful because it gives the right answers . ([311,1771 • )

The conception of an ensemble as a collection of repeated indis-

ttinguishable experiments allows these difficulties to be resolved or

avoided . We shall take ensemble to mean a collection of experiments

without attaching a probability law to the experimental outcomes .

We might stress that this interpretation is not standard, either in

3E

physics or in probability and statistics .

The difficulty inherent in conceiving of the ensemble as a physical
.,ntity becomes manifest when one tries to ascribe a meaning to the
ensemble average energy . The usual procedure in physics follows a
suggestion made by Einstein in 1914 . (For a summary of the argument
in English, see von Neumann [89], p . 361 ff .) Consider n non-inter-
acting replicas of the system all placed in a, heat bath and allowed
to come to thermal equilibrium (by exchanging energy) . The distribution
of energy among the n replicas may be then shown to follow the Boltzmann
distribution by exactly the same methods Boltzmann applied to the molecules
off an ideal gas . In the formulation we suggest, the ensemble is composed
of n replicas of an experiment, conducted at the same temperature .
The concept of temperature implies that heat (energy) would not spon-
;aneously flow from one system to another system at the same temperature
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A basis for assigning probabilities to a collection of repeated,

indistinguishable experiments was given more than thirty years ago

by de Finetti . He introduced the notion of exchangeability, as follows

([2'0], p . 123) :

We shall say that x1, x2 , . . . , xn , . . . are

exchangeable random quantities if they play a

symmetrical role in relation to all problems

of probability, or, in other words, if the pro-

bability that xk , xk
J'

. . .
J'

xk

	

satisfy a
1

	

2

	

n
given condition is always the same however the

distinct indices k1 . . . kn are chosen .

We can regard exchangeability as an invariance concept :

ability can be interpreted as an application of the basic desideratum .

11' we have a sequence of uncertain quantities (experimental outcomes),

. . , x
n

, and our state of information is not changed by permuting

orr even randomly assigning the labels specifying the order of the

quantities in the sequence, then the quantities are exchangeable . An

ensemble composed of a collection of indistinguishable experiments is

then a collection of exchangeable random quantities .

Exchangeability is a concept that applies to a state of infor-

mation . By defining an ensemble as a sequence of exchangeable

Exchange-

if the two systems were brought into thermal contact at some particular
Time and place ; however, the experiments might take place at different
times using the same system or different systems . Our formulation is
consistent with Einstein's conception, but free of the conceptual
d .ff:iculties imposed by a heat bath filled with mental copies . (For
an example of the confusion these conceptual difficulties can engender,
the reader is referred to Schr8dinger L77], p . 3 .)
The concept of an ensemble in statistics is usually used in reference

to a stochastic process to mean the set of possible outcomes of the
process over time together with the probability law assigned to these
outcomes ([10], p . 39 ; [62], p . 72) .
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experiments, we emphasize that an ensemble is a mental concept that

may have no actual physical counterpart . While we might think about

a. Large number of indistinguishable experiments, it may be possible

to perform only one experiment .

Nothing has been said about the timing of the experiments . They

might be performed simultaneously on experimental systems that are

,cadged indistinguishable, or they might be repeated experiments using

the same system. In this latter case of sequential experiments over

ti.rne, exchangeability is equivalent to stationarity and independence

assumptions : the same probability distribution is assigned to the

experiment no matter when it is performed or what sequence of outcomes

preceded it .

'5 .

	

De Finetti's Theorem

Viewing ensembles as exchangeable sequences allows a very important

theorem due to de Finetti to be applied . A rather lengthy proof is

found in de Finetti's original paper [20] ; a more elegant but less

accessible version is available in Love [51] .

De Finetti's Theorem : Let x1 , x2 ,

able random quantities . Then x1 ,

65

. . , xn

xn be a sequence of exchange-

are conditionally independent

with a common probability distribution . That is, the joint distribution

of any subset xk , Xk ,
'"

, Xk of the random quantities may be
1

	

2

	

J

	

*
written as an expectation of the product of conditional distributions

x

From this point on we shall make extensive use of inferential notation .
(see, for example, Howard L30] .) The brackets ( I,J) denote a pro-
bability mass function for discrete outcome spaces, or a probability
density function for continuous spaces, assigned conditionally on a
particular state of information g • fx represents a generalized



x
k ~e) _

	

[ (xk I w)€) (xk

	

(xk.

	

(w ILO )
~

	

1

	

2

	

J
w

	

(5 .1)

The distributions (x k w,e) are identical, and w is a parameter

J
indexing possible distributions .

De Finetti's theorem has a straightforward interpretation in the

framework of Bayesian inference . Suppose there is a process generating

exchangeable random quantities x 1 , x2 ,

	

, xn . Initially we have

a prior probability assignment [ w 1e) on the frequency distribution

or limiting histogram w that would summarize the observed outcomes

:in a large number of exchangeable experimental trials . The prior pro-

bability assigned to the outcomes of the first

(5 .1),

j trials is, from

(5 .2)(xl, . . .,xnle) _

	

[ [xl I w,e)(x2I w,60) . . . (xn I w ,e} ]( w It

w

and after learning the results x 1 , . . . ,

update the probability assigned to x
n+l'
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xn, we could use these to

summation over the outcome space of the random quantity x . The expec-
tation off a function of a random quantity x will be denoted

< cp(x) I ,d>

where dr is the state of information on which the probability distri-
bution of x has been assigned . In some cases we shall wish to switch
Ix , a functional notation by defining, for example,

p(x)

	

(XI w,e )

e is conventionally used to represent the "prior" information that is
,avail-able at the beginning of the analysis .



(xr.l+llxl)x2, . . .,xn,~) _

	

(xn+lIxl' . . .,xn,

U)

From the conditional independence,

lxn+llxl'

	

' xn,e)

and using Bayes' Rule to evaluate (w Ix1 , . . . , xn ,6),

n+llx1
; . . .,xn,e) =

(J'20 ]) .

f (xn+l I w'e)
(x1, . ,xn I w ,~) { w 16)

CD

I

Ix1 , . . .,xnA

(xn+l l w ' F)
(w l x1 , . .

	

, xn ,e)

	

(5 .4)

(5 .5)
(x1 , . . .

)
xn lw ,E)

w,')(m (5 .3)

Perfect information about exchangeable experimental trials corres-

ponds to perfect information about w, which specifies which long-run

frequency distribution is appropriate for the sequence of exchangeable

experiments . De Finetti's theorem provides a link between the subjective

and frequency interpretations of probability . The concept of exchangeable

experiments defines a domain in which frequency-based probabilities are

appropriate . It also gives a means of interpreting the classical limit

theorems of probability in a subjective context . De Finetti proves

the strong law of large numbers for exchangeable random quantities

We shall use this important result extensively in the develop-

went that follows .

The meaning of de Finetti's theorem is perhaps best illustrated

by the simplest case . Suppose that the exchangeable quantities

X , x , .

	

are Bernoulli random variables, which take on only the
1

	

2

values 1 or 0 . Then de Finetti's theorem states that these random

variables may be considered as independent, conditioned on a parameter



P . the probability of having a 1 result on any given trial . The

prior probability distribution assigned to the result of any sequence

of trials will then depend on the prior probability distribution

assigned to the parameter p .

Now suppose that we observe a sequence of experimental trials

x 1 , x2 , . . . , x
n

and build up a histogram of the results . Since

there are only two possible outcomes for each trial and the number

of trials is fixed, the histogram has only one degree of freedom ;

it is completely-specified by f, the fraction of 1's . By the (strong)

law of large numbers, f approaches p (with probability one) as

approaches infinity . We can think therefore of p as a constant of

the process that characterizes any sequence of Bernoulli trials . By

de Fi.netti's theorem p characterizes the sequence completely, for

iL we knew something beyond the value of p for a particular trial,

we would destroy the exchangeability of the sequence .

For the Bernoulli case one constant p is sufficient to specify

tho long run frequency distribution uniquely . However, when more

than two outcomes are allowed for the exchangeable experimental trials

x 1 , it is possible to have a set of process constants that do riot

specify the probability distribution uniquely . This concept is the

key to an understanding of the applications of the maximum entropy

principle .

Consider the case in which the outcome space has N points . We

shall define a random variable x on these points ; x can assume

values x(l), . . . , x(N) . The probability distribution assigned to

x ., for any arbitrarily specified experimental trial

	

is then
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{x .le) = p(x) = (p1) . . . , PN), where pk = [x . = x(k)1e° ) for

k = l, . . . , N .

	

The probability distribution p l ,

	

, pN will

have N-1 . degrees of freedom : the normalization constraint

will determine one number, say pN, in terms of the other N-1 pro-

bability assignments .

Let us consider a sequence of n identical, indistinguishable

(,i. .e ., exchangeable) experimental trials x 1 ,

	

xn . Let nk be

the number of occurrences of the kth outcome, k = 1, .

	

, N. We can

define the long-run fraction

N

L pk = 1

	

(5 .6)
k=1

f = nk
k

	

n
(5 .7)

as the fraction of experiments that yield the kth outcome . The histo-

~7ram fl ,

	

will have N-1 degrees of freedom as a result

of the constraint

N

L nk = n

	

(5 .8)
k= l

Each possible histogram (f1, , f
N

) is then contained in, an

h-1 dimensional simplex of an N-dimensional Euclidean space defined

by the constraints f k > 0, k = 1, . . . , N, and

N
fk = 1

	

(5 .9)
k=1

Because the trials are exchangeable the distribution is the same
for all j . We shall drop the subscript j henceforth .
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obtained from (5 .8) . This simplex constitutes the outcome space for

the random quantity ca .

A set of N independent equations (including (5 .9)) involving

the fk would serve to specify a unique histogram . As the number of

trials n approaches infinity these fractions fl , . . . , fN will

converge to the probabilities p1 , . . . , pN (by the law of large

numbers) . Therefore we can think of the probabilities p1,

	

. , pN

as specifying the process that generates the exchangeable trials .

These numbers may not be known, and we may wish to infer them from

data and prior information by Bayes' Rule . If we had a set of equations

that we could solve for the numbers p1 , . . . , pN such inference would

be unnecessary ; we could solve directly for the large sample limit of

the histogram, m . For example, knowing the first N-1 moments of

a random variable x might allow us to solve for this limiting distri-

bution .

The Extended Principle of Insufficient Reason as a Basis for the

Maximum Entropy Principle

Suppose that a set of functions 01, . . . , 0
1

are defined on the

probability distribution p
1

, . . . , p
N

= (xj w,e) . Let us suppose

that our prior knowledge e does not concern the probabilities

pN
directly, but rather our knowledge relates to the values

c 1 , . . . , cI attained by these functions and therefore it relates

indirectly to the probabilities pl , . . . , p
N

:

ci = 0 i (p1 , . . . , p
N )

= 01((xI u',(F)
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It will be assumed that 8 . is a continuous function of the1
An important special case will be that in which the functions

are expectations . The expected value of a function cp
i
(x) of

the random quantity x is given by

than I, the process constants

N
c .i = < cpi (x) J w,~> = E cpi (x(k))pk .

	

(5.11)
k=1

Suppose that the values of the constants c 1 , . . . , c I are known,

but we do not know the limiting histogram w (equivalent by the

strong law of large numbers to the probability distribution (XI cn,e)) .

The normalization condition (5 .9) plus N-1 independent ensemble

constants of the form (5 .10) would serve to determine the distribution m.

Obviously, there might be many alternative sets of constants that could

be used to determine a given distribution . A trivial set of constants

wanAd be a set of N-1 identity equations each specifying the proba-

bility assigned to a single outcome .

We shall often be confronted with situations in which the sets

equations defining constants c 1 , . . . , c I in terms of the distri-

bution p1 , . . . , pN are not sufficient to specify this distribution

uniquely . We may perceive our state off information to be equivalent

to statements about only a few process constants c 1 , c2 , . . . , c I ,

while the number of outcome points N is very large . It may often

se desirable to let N approach infinity . Whenever N-1 is greater

c I , . . . , c I will not be sufficient

to specify a unique distribution 0) . In these situations we must

on an additional invariance principle .
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The invariance principle that will permit us to resolve the

indeterminacy in the distribution w for an exchangeable process

is

The Extended Principle of Insufficient Reason : Suppose that

our state of knowledge about an exchangeable sequence x1 , . . . , xn

is perceived to relate to the values c l , . . . , cI attained by

a sequence of given functions 01, . . . , 0
1

defined on the long

run frequency distribution w (by the strong law of large numbers,

(pi " . . . , PN )

(xlw ,6} that would be assigned to a single observation on the

basis of a very large number of past observations of the process) .

Then any two sequences of experimental outcomes whose histograms

give equal values to the functions 01, . . . , 0I are to be judged

equally probable .

w is equivalent to the probability distribution

If the set of constants cl , . . . , c I is sufficient to determine

the distribution w uniquely, then the extended principle of insuffi-

cient reason reduces to the invariance inherent in an exchangeable

process ; the probability distribution assigned to any sequence of

experimental results is invariant to permutations in the order of

the sequence . That is, every sequence leading to the same histogram

is equally probable . When the constants c 1 , . . . , c I do not specify

a unique distribution w through the equations (5 .10), then applying

the functions 01 , . . . , 0 1 to different histograms f1 , . . . , fN

and f, . . . , f,', resulting from two sequences of experimental outcomesL

may lead to the same values for these functions : 01(f1,

	

' fN )

0 1 (fl , . . . , fN) . These two sequences of experimental outcomes are
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then to be judged equally probable .

The extended principle of insufficient reason is an invariance

principle that may be derived from the basic desideratum . The basis

for this derivation is the way in which we have specified our state of

information . We are assuming that prior knowledge 6 relates only

to the values cl , . . . , c I attained by the functions 8 1 , . . . , 8 1

when applied to the limiting histogram w that summarizes a large

number of experimental outcomes . Therefore, our state of information

should be unchanged by any transformation on experimental outcomes that

leaves the values of the functions 8 .
i

xn of outcomes generated by thean arbitrary sequence
0

xl ,

unchanged . Suppose we have

exchangeable process, and we construct a histogram f l ,

	

, fN

summarizing the fractional number of times the k th outcome was observed,

k = 1, .

	

, N. Now suppose that a transformation or relabeling of

the outcomes leads to a new histogram fi, . . . , fN that gives the

same values to the functions 8 1 , . . . , 0
1

(the transformation depends

on the functions 81 , . . . , 01 , but of course it cannot depend on the

particular sequence xi, . . . , xn) . Since prior information relates

only to the values attained by the functions 8 1 , . . . , B I , the trans-

formation leaves the state of information unchanged . Hence we must

assign the same probability in both situations as a consequence of

the basic desideratum : We must assign the same probability to the

transformed sequence as to the original sequence .

A limitation of the specified state of knowledge to a subset of

the constants needed to specify the distribution may be regarded as

a "null hypothesis ." If the distribution that results from applying
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the extended principle of insufficient reason is confirmed by the data,

then we have a relatively simple characterization of an apparently

complex process .

	

If the distribution does not correspond to the

observed data, then we must try to find a better model, perhaps by re-

examining the way we have specified our knowledge and incorporating

aspects of our information that were previously ignored . We shall

return to this question of model testing in Chapter 7 .

From the extended principle of insufficient reason it is a straight-

forward matter to derive the maximum entropy principle . In fact, the

mathematics of the proof are standard in physics (L3l],f77]) .

'Theorem 5 .1 : The Maximum Entropy Principle for Statistical Ensembles .

Suppose cl) . . . , CI are known constants corresponding to

functions 0 1, . . . , 0I acting on the (unknown) distribution m .

The extended principle of insufficient reason implies a maximum entropy

principle for . statistical ensembles . Namely, the distribution

(x1cl, . . . , c I = el = (p1 , . . . , IN) that should be assigned to x

on the basis of knowledge of the constants c1

	

I
is that

which maximizes

N
pk log pk

k= l
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A similar viewpoint on the maximum entropy principle (to be derived
from the extended principle of insufficient reason) has been expressed
by Good [28] and Jaynes f35], [40] . It is especially important in
physics where knowledge concerns conserved quantities such as energy
and angular momentums .



subject to

and

pk > 0

	

k = 1,

	

N

	

(5 .13)

N

k= l

ei(pl.,
. . . , PN ) = ci

	

i = l,

	

1

	

(5 . i5)

Proof of Theorem 5 .1 : Let us consider the situation in which we have

observed n exchangeable trials, i .e ., we have n samples from the

stochastic process x 1 , x2 , . . . . The kth outcome has been observed

to occur nk times, k = 1, . . . , N . The histogram corresponding to

these results might have been generated by any of W sequences, where

n!
nln

	

n2 . . . . nN,

Ls the number of ways of arranging n objects in N categories,

with n
1

objects in the first category, n2 in the second, etc .

Because the trials are exchangeable, each of these sequences is equally

probable .

Suppose that n, nk for k = 1, . . . , N is large compared to

N, i .e ., n > N. Then the factorials in (5 .16) may be evaluated by

Stirling's approximation :

n! -zf e -nnn 27M

	

(5 .17)

then

log n! = n log n - n + 0(log n)
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where O(log n) denotes terms that increase no faster than as log n

as n becomes large .

We can then write the logarithm of (5 .16) as

N
log W = log(n!) - L.L log(nk !)

k= l

N

	

N
n log n - n - E nk log nk + 2 nk + O(log n)

k=1.

	

k=1

N

E nk log(nk/n) + O(log n)

	

(5 .18)
k=1

and dividing by the number of trials n,

N n

	

n
1 log W = - E k log

k + 0(log n )
n

k=1 n

	

n

	

n

N
fk log fk + 0( log n )

k=1

A> n goes to infinity, the terms of the order of log n/n become

negligible compared to the first term, and by the (strong) law of large

numbers the frequencies fk converge to the probabilities

probability one) . Hence

N
lim (n log W) _ - L pk log pk

n - co

	

k=1

= H(p1, . . . , pN ) .

pk (with

(5 .19)

The entropy function H(p1,

	

pN) measures the limit of the natural

logarithm of the number of possible sequences generating a given (long

run frequency) distribution divided by the sequence length .
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Now let us consider the constraints imposed by knowledge of process

constants, c1, . . . , cI . For a sequence of n experimental trials,

we can compute corresponding experimental values c i (n) from the

functions 0
1

applied to the histogram fl,

	

, f
N

:

0i (f1

	

, f N
) = ci (n) .

	

(5 .20)

Suppose we choose small intervals [

	

- 8ci , c i + 8c i ] around the

known values c . of the ith process constant, i = 1,

	

I . We

can choose n large enough so that each ci (n)

corresponding interval with probability 1-E, where c is an arbi-

trarily assigned small number ; this follows from the strong law of

large numbers and the assumption that the 0 .
i

are continuous .

ci - 8ci < e(f1, . . . , f
N

) < ci +
8ci

.

	

(5.21)

Now, having chosen n, let us compute the most probable histogram .

By the extended principle of insufficient reason, all sequences that

satisfy the given constraints (5 .21) are equally probable ; however, a

given histogram f1 , . . . , fN may be generated by any one of

W(f'L , . . . , fN) sequences . If we then search for the histogram which

can be realized in the greatest number of ways consistent with the

constraints (5 .21), we have the following problem :

maximize W(fl,

	

, f N )

subject to (5 .21) and the conditions necessary to insure that

. . , fN is a histogram :

is contained in the
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will. give the same distribution as maximizing W . If we let n go

to infinity, the probability that a constraint equation (5 .21) will be

violated approaches zero, and the frequencies fk converge to the

probabilities pk . We can shrink the intervals 25 in the constraint

equation to zero, and (5 .23), (5 .22), and (5 .21) become (5 .12), (5 .13),

and (5 .15) .

Recall that W is the number of outcome sequences giving rise

to a given histogram . Then dW/W would be the percentage change in

the number of sequences corresponding to a given histogram . But since

the ri

dW
W= ndH

.

	

(5.25)

A . n goes to infinity, the percentage change in W as a function

of changes in the histogram becomes infinitely sharp ; the histogram

corresponding to the distribution that solves (5 .12)-(5 .15) can be

produced by infinitely more sequences than any histogram found by

varying that distribution a finite amount .

The sharpness of the maximum in W is another manifestation

(A' the law of large numbers . It is because of the law of large numbers

N
fk > 0, k = 1, . . . , N,

	

L f = 1 .

	

(5 .22)
k= 1

F'(--)r fixed n, maximizing

H(fl, . .- fN) = 1 log W(f1, . . . , fN)

	

(5.23)

nH(fl, . . .
W(fl,

	

, fN) == e

	

,
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that the extended principle of insufficient reason leads to the precise

characterization of the distribution (x1c l , .

	

, cI = 6) by means

of the maximum entropy principle .

5 .4 Solutions for Expectation Information

Let us first consider a simple example . Suppose we have an ensemble

of random variables xl , x2 , . ., that can take on N discrete real

values from zero to some large positive number . Suppose only one

ensemble constant is assumed, namely, the mean or ensemble expectation

in . The corresponding distribution (xjm,g) = p(x) for this case is

easily found using the maximum entropy principle that we have just

derived from the extended principle of insufficient reason . We wish

to maximize

H({x Jm,8}) = -

	

p(x) log p(x)

	

(5 .26)
x

:subject to

p(x) > 0 for all outcome points x (5 .27)

E p(x) = 1 (5 .28)
x

and the equation defining the ensemble constant m

E xp(x) = m .

	

(5 .29)
x

We shall find that (5 .27) is automatically satisfied because of

the form of the entropy functional H . To deal with the other con-

straints we form the Lagrangian
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E'(p(x),µ,?,) _ - E p(x) log p(x) + 4 E P (X) -l) + % E xp(x)-m
x

	

x

	

x
(5 .30)

Setting the partial derivative of 2 with respect to p(x) equal to

zero gives the equation for an extremum :

by using

log p(x) + 1 - µ - ax = 0 for all outcome points x .

	

( 5 .31)

By examining the second partial derivatives of J2 we may verify immedi-

ately that this extremum will be a maximum . The Lagrange multiplier

µ corresponds to the normalization condition (5 .28), and so we may

obtain from (5 .31)

(x) = 1
+~c

p

	

Z e

where the "partition" function Z = Z(k) is defined so as to normalize

the probability distribution :

z(x) = Ee
+%

x

The multiplier % may be evaluated in terms of the

(5 .29) .

a log z(x) =2E xexx =<xIm,e>=m
x

8o

known quantity m

(5 .32 )

Is order to continue we need a specific form for Z(k) . Let us assume

that the possible outcomes x are spaced evenly and very close

together, and we shall let N go to infinity . Then the sums over x



can be replaced by definite integrals over x from zero to infinity .

We have

and

The distribution [xlm,E) =

J o

e dx _ - 1
0

a~ log Z(x) _

1
m
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= m

e -x/m is now clearly recognizable

(5 .33)

(5 .34)

as the exponential distribution . For the distribution of particle

energies in statistical mechanics it is called the Boltzmann distri-

bution, and in Gibbs' formulation it is equivalent to the canonical

distribution . This distribution forms the basis for most of classical

statistical mechanics . With some minor adjustments having to do with

the character of the outcome space the method works equally well in

quantum statistical mechanics ([82],[84],[87]) .

Many other well-known probability distributions can be derived

on the basis of maximizing entropy subject to a knowledge of a few

ensemble constants, corresponding to expectations of simple functions .

Some of these distributions are listed in table 5 .1 :

This artifice of allowing the outcome space to become continuous
only at the stage of calculating the partition function Z avoids

some problems that arise in defining the entropy functional for a

continuous outcome space . An introduction to some of the literature
on these problems is found in Abramson [1], pp . 39-40 . A way of
solving them by incorporating a measure function into the entropy func-
tional has been proposed by Jaynes [36], [40] . For most applications
of interest this measure (density of outcome points per unit interval)
will be constant and the solution of the maximum entropy problem for
an ensemble will be formally the same for a continuous distribution
as for the discrete case .



Table 5 .1

Distributions Derivable from Maximizing Entropy

Subject to Knowledge of Ensemble Expectations

Known Ensemble Expectations
Cutcome Space

finite interval

non-negative part
of real line

real line

real Line

[0 1]

reaL line

real line

	

CPI(x) _ 1xI

	

Laplace

It is possible to show in general that maximizing entropy subject

to expectation constraints results in probability distributions of

a special exponential form . Moreover, any distribution of this form

can be regarded as the solution to a problem of maximizing entropy

subject to expectation constraints .

Theorem 5 .2 : Given an ensemble (a process generating exchangeable

trials) x1 , x2 , . . . , then for the distribution [xIs) = p(x) to

be of the exponential form
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of Functions T i (X) Distribution

uniformnone

cpl(x) = x exponential

cpl(x) = x normal

P2 (X)
_ x2

cpl(x) = x gamma

cp2 (X) = log x

Ti
(X) = log x beta

T2 (x)
- log (1-x)

Pi
(X) = log x Weibull

cp2 (x) = x~ (~ is a fixed
constant)



i - 1, . . . , I,

subject to

p(x) = z(T1, . l . , ~I)
exp

it; is necessary and sufficient that the distribution p(x) maximize

the entropy functional

H(p(x)) = -

	

p(x) log p(x)

	

(5 .36 )
x

subject to constraints on the expected values of I functions (p .i

of the random variable x :

f .(x)P(x)(P= < CPi (x) + 6 > = ci .

	

(5 .37)

It is assumed that these expected values remain finite if we allow

outcome spaces to become infinite .

Sufficiency

Suppose we have the following optimization problem : Maximize

x

H(p(x)) = - J p(x) log p(x)
X

p(x) > 0 all outcome points x

	

(5 .39)

f p(x) = 1

	

(5 .40)

f Ti (x)p(x) = ci
X

In the usual way we form the Lagrangian :

83

I

E x . p . (x)

	

(5 .35)
i=l

Y

(5 .38)

i = l,

	

, I .

	

( 5 .1+1)



1%(P(X), µ, x1 , . . . , %I) = - f P(x) log p(x) + µ

I

+

	

% i

	

p(x)ci (x)-c i
x

The condition for a maximum is easily seen to be that

a,C

	

I
ap(x) = 0 = -log p(x) - 1 + µ +

	

~ icpi (x)
i=1

a
~- log Z(%,, . .

2
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5 .42)

(5 .43)

hold at every outcome point x . This is equivalent to the form (5 .35),

where the constant Z(%1, . . . , T. I ) is determined by the normalization

condition (5 .40) . The values of the multipliers

	

may

be solved in terms of the expectation values c i using the relations

that

, %I ) = < (Pi (x) I € > = c i .

	

(5.44)

It is presumed that at least one distribution satisfies the con-

,traint equations (5 .39), (5 .40), (5 .41) . Since the functional H

is strictly concave in the p(x), the solution to the maximization

problem will be uniquely determined by (5 .43) and the normalization

condition (5 .40) . The system of equations (5 .41+) must therefore

determine a unique distribution .

Necessity :

Suppose we are given a distribution of the form (5 .35), say,

p'(x) . We can compute the expectations of the functions cP
i

over

this distribution :

< cpi (x) I e > = c i (5 .45)



These are presumed by hypothesis to be finite . Now supposing we solve

the optimization problem specified by (5 .38), (5 .39), (5 .4o), (5 4i) :

et least one distribution, namely p t (x),

f p(x)
X

-log p(x) < -

	

p(x) log p*(x)
x
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satisfies the constraints

(`x .41), so by the sufficiency part of the proof' we obtain an answer

I
p* (x) = Z

	

exp

	

%~i (x)

	

(5 .46)
1

	

n

	

i=1

and Z* are both determined by the requirement (5 .40) that the

distribution must normalize to one . For both distributions we must

have

<

	

(x) ~

	

> = c i =- log Z

	

(5.47)
1

which must determine the distribution uniquely because the maximization

problem has a unique solution . Hence p(x) and p*(x) must be iden-

tical .

An alternative argument (Jaynes [36]) may give more insight into

the theorem . Let us start with the fact that log z > (L-z -1 ), with

equality if and only if z = 1. Then if we have any two probability

distributions p(x), p*(x) over an outcome space,

log p(x)

	

> f(x)1

	

p- p*(x)
= 0

p*(x))

	

x

	

p(x)

or

	

(5.48)fX p(x)

w=ith equality if and only if p(x) = p*(x) . This result is equivalent

to lemma 3 of.' Section 4 .



Now suppose we choose

I
p*(x) = z(~ , 1 • ,

	

) exp

	

~i~i(x)

	

(5 .49)
1

	

I

	

i=1

where T.1 , . .

	

, T.I are fixed constants, and Z(T.1 , . . . , ~.I ) is

determined by the normalization condition :

Z(%1 , . . . , T I ) =

	

exp I'

	

T.i TPi (x)

	

(5 .50)
X

	

i, 1=

Inserting p*(x) in (5 .1+8) we obtain

I
p(x) log p(x) < p(x) L \. (x) - log Z(%1,..

X

	

x

	

1=1

Let us require that p(x) satisfy the constraints

f P(x)Ti (x) = c i
X

Equation (5 .51) then yields

)(X) = p* ( x),
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i

	

1, . . . , I .

,T I )
J

-

	

(5 .51)

(5 .52)

I
H(p(x)) <

	

T . c i - log Z(T .1 ,

	

. . , T I )

	

( 5 . 53)
i=1

The maximum value of the entropy H is then attained if and only if

in which case (5 .53) becomes an equality . The only

remaining detail is to choose the constants %1 , . . . ,
T'I

so that

(5 .52_) is satisfied; this condition implies

c i = ~a - log z(~, 1, . . . , %I ) •

	

( 5 .5 1+)
1

The equations (5 .54) must determine the 7 . so that the resulting



distribution p*(x) is unique . For if there were two distributions

of the form (5 .49) such that the fixed constants 2 . satisfied (5 .54),

we could choose p*(x) equal to one of them arbitrarily and (5 .53)

would imply that this distribution had greater entropy than the other .

Since the choice of the distribution is arbitrary we have a contra-

diction, and the distribution p*(x) must be unique .

The implications of theorem 5 .2 become apparent when we consider

he situation in which some of the constants c . are not known . That
i

;, we know the number of such ensemble constants, and for each we

}:now the corresponding function cp
1
., but we do not know the value of

the constant c i . We can think of the c i (or equivalently, the X i

ietermined from equation (5 .54)) as unknown parameters of a probability

distribution whose functional form is otherwise known (e .g ., the func-

t;ional form is derived from the extended principle of insufficient

reason by means of the maximum entropy principle) .

The usual precepts of the Bayesian methodology imply encoding

Knowledge about unknown parameters al , . . . , av in the form of a

:probability distribution (al , . . 11 av then updating this dis-

tribution using Bayes' rule as samples x 1, x2 , . . . from the ensemble

become available . If the distribution {x Jal , . . . , av ,~) is char-

acterized by sufficient statistics, the effect of the samples in the

updating process can be summarized by a vector of fixed length and

it will be possible to construct conjugate families of probability

distributions for the parameters .

Suppose we have samples x l , . . . , x ri from an ensemble, and

suppose there exist in functions of the observations,
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. . . , m. We shall suppose that m is independent of the number

cf samples n. Since the parameters may be varied -independently we

shaLl wish to have m > V, the dimension of the parameter space . The

functions sk are defined to be sufficient statistics iff they include

':11. the necessary information for updating the prior distribution on

the parameters al, . . . , aV . That is, if

sk(xl, . . . , xn ) = s k (xl,

	

, x*)

	

(5 .55)

for k = 1, . . . , m, then the ratio of the likelihood functions for

any two sets of parameter values is the same for x 1

nor x1*, . . . , X* .

n

	

n

I I (xi fal , . . . , av ,g}

	

I _1 (x1+al ,

n

	

= n

FT (xi 1al, . . . , u , 16) FT (xlIa
=l

	

i=1

where al , . . . , aV and a', . . . , av are any two possible (i .e .,

nos-zero probability) sets of parameter values . From this definition

it is apparent that the sufficient statistics s,,

	

, 5m partition

the possible sets of observations x 1 , . . . , xn Into equivalence classes

that give the same ratio for the -likelihood functions associated with

any two parameter values al , . . . , aV and al, . . . , av . It is

convenient to include the number of observations n as an ancillary

statistic, as the likelihood ratio (5 .56) will in general depend on

this quantity .

There is an important theorem that gives necessary and sufficient

conditions for the existence of sufficient statistics . This theorem
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(5 .56)



was proved almost simultaneously by B . 0 . Koopman [46] and E . J . G .

F'i.tman [63], but the full power of the theorem only became evident

with the proof by Jeffreys for discrete as well as continuous outcome

spaces [42], [431 . The proof given here is substantially the same

as Jeffreys' proof .

Theorem 5 .3 (Koopman-Pitman) : Suppose that a probability distribution

La ; parameters a = al , . . . ,aV . A necessary and sufficient condition

that this probability distribution possess sufficient statistics for

inference on these parameters is that it be expressible in the form

(xja,LO) = A(cx)V(x)exp

	

ui (a)vi (x)
` i=l

-'?roof : Suppose that the probability distribution has the form (5 .57) .

CP>nsider a set of n independent observations from this distribution,

. , xn . Clearly the likelihood function for these observations

i

n
xn ~a,€) _ I I [xj I&e)

j=1

n

= An(a)

	

I I *(xj )

k
j=l

-race in the ratio of likelihood functions for different sets of para-

n
meter values a, a ' the common factor 114(x .) will cancel, the v

functions

n
s i (xl , . . . , xn ) = E vi(x .)

	

(5 .59)
j=l

are seen to be sufficient statistics for the parameters
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V

	

n
exp

	

u
7
.(a) E v .(xj )

i=i

	

j=l
1

(5 .57)

(5 .58)

al, . . . , av .



The necessity portion of the proof requires a considerably more

involved argument . Let us suppose that we are given a set of m

functions sk (x
1)

. . . , xn ), k = 1,

	

, m, such if x = x1 , . . . , xn

arid x* = xi, . . . , x* are any two sets of possible observations for

which sk (x) = sk(x*), k = l,

	

, m, then for any two possible

parameter sets Cx and

	

equation (5 .56) is satisfied . We shall

assume that the number of observations n is greater than the number

of statistics m .

Let us denote the likelihood function for the observations by L .

Since the observations are independent,

L =

n
[x1 , . . . , xn Ja,e) _

j=1

and therefore its logarithm must be of the form

n
log L = j g(xj , al , . . , a )

j=1

where g is a known function of the v+l arguments .

The knowledge that the sufficient statistics s l , . . . , sT,` exist

permits us to write another expression for log L . Since the ratios

i (5 .56) can depend only on the values of the statistics s1' . . . ' sm,

must be a product of two factors, one depending on a and the

observations only through the statistics s l,

	

, sm' and the second

vdiose dependence on the observations x1 , . . . ,
Xn

is unrestricted,

Put; which cannot depend on the parameters 9 ; this second factor must

cancel in computing the likelihood ratios in. (5 .56) . Therefore, the

cogar :ithm of the likelihood function must be expressible in the form

x
.

9o

(5 .60)

(5 .61)



log L

	

(D(sl , . . . , sm , a1) . . . , av ) + X(xl , . . . , x r ) .

	

(5.62)

The required equivalence of the functional forms (5 .61) and (5 .62)

implies that we may use an equivalent set of sufficient statistics

that are additive in form . Suppose that we start with a fixed set

)f' parameter values

	

*, a* = c

:peter at a time to another possible parameter value, a- + b .
I

- These

changes need not be infinitesimal . For a given set of observations

, xn the corresponding change in log L is (from (5 .61))

•

	

log L(xl, . . .,xn+ S	a,,)

- logL,a;)

n
•

	

E ( g(xj ,ai, . . ,ai + si , ,a*,) g(x .,a*,i
j=1

n

j=1
•

	

vi (x .)

The functions vi (x .) defined by (5 .63) are clearly dependent on

the values chosen for a*

reality the logarithm of the likelihood ratio for a special case of

(5 .56) . We can see the consequences of this fact even more clearly

from (5 .62) : we require that

.~ = ID(s , . . , sm,ai, . . . ,ai + si , . . . ,av) - p( s

and b . . But we observe that 0 . is
1

	

1

P1

and we change one para-

(5 .63)

,al, . . .,av))

Ism,aL, . . .,al, . . .,a*)

(5 .64)

In words, the A ., which are functions of the observations of the

form (5 .63) must depend on the observations in the same ways as the



,statistics s l , . . . , sm . Inserting the functions sk(x 1 , .
.-

the values chosen

l, . . . , m in (5 .64) must reduce

identity in the observations x l, . . .

for a* and

the equations (5 .6 1 ) to an

, x
n

that holds regardless of

81 , . . . , SV . Therefore, the functions

. , sm and A ,

	

, w must determine the same equivalence

classes on the observations, regardless of the values chosen for a*

and 81 ,

	

, 8V . We have now found a set of v functions

`'\'1 (xl' " '

	

X-n)
that satisfy the definition of sufficient statistics,

and have the additive form (5 .63) . For the remainder of the proof

we shall use the sufficient statistics ni , i = 1, .

	

, v, defined.

by (5 .63) .

Let us now consider two possible sets of parameter values, a

and- a* . The logarithm of the likelihood ratio for a specific set

observations x = xl , . . . , xn must depend on these observations

only through the sufficient statistics Di :

n
tog L(x,x) - log L(x,(*) _

	

g(x.,CC) - g(xj ,a -)
j=1

_ (D (mil, . . . , ln~V ,Cx) - 'D (Ol , . . .

ince the
~i

are sufficient statistics . From (5 .63),

log L(xa) - log L(x,a - ) _

	

vl(x
J
.),I

j=1

n

n
(D E vl (xj ),

j=l
,

n y
vV (x

jj=1

n

	

n

	

_
vl(x .), . . . , E v (x .),a*

j=l

	

J

	

j=1 V

n

j -E1
1

vV (x~) ,Cx

(5 .66)

(5 .67)

, Xn ))

(5 .65)

, oV a )



taking the parameter values a* as a fixed reference point .

Suppose now that the j th observation x
J

. is replaced by x
j

. + h . .
j

The change in the logarithm of the likelihood ratio must be the same

whether computed from (5 .67) or from the form

difference operator D . on functions of x 1 ,

	

,
X11

by
J

1D(.f(xl, . . .,xn) = f(x
1

, . . .,x . + h	xn ) -

we can write this equivalence as

1, .

D
i
g(xj ,a) - D .g(xj ,C~ - )

n
= Dj I(E v

k= l

V .
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(5 .61) .

n
. . . , E vv (xk ))

Defining a

. .,x	x )

	

(5.68)n

We note that the left-hand side depends only on the one observation

x . and not on any other observations . Hence the right-hand side
n

depends on the observations through the functions
Ai

= E vi (xk ),
k= l

(5 .69)

If we were to vary another observation x j , the

right-hand side of (5 .69) must remain the same, so the change in the
n

functions A_i = E vi (xk ) must cancel out . This cancellation will
k=i

Occur if and only if I is linear in the functions A . . (Otherwise

a variation in x .
J

would produce equal changes in the arguments of

the two functions I whose difference is taken by the operator D
J
. .

There is no functional dependence between the

	

and therefore the
1

right-hand side of (5 .67) should riot be the same .) Then

ov a) _

	

ui(U)Di + p(a) ,

	

(5 .70)
i=1



with

and since J is in fact the logarithm of the likelihood function :

A ,a*)

	

(5.72)

n

	

n
_

	

g(x ., al , . . . , av) -

	

g(xj, al, . . . , a*)

	

(5 .73)
j=1

	

j=l

and so we must have

g(x
J
., a1 ,

	

, av )

n
Di = E v i (x .)

	

(5 .71)
j=1
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V
ui(a)vi(x .) + p(a)

+ g(x ., a*, . . . , a;)
J

The parameter set a*, . . . , av is fixed, and since g(x .,al, . . .,av)

is the logarithm of the likelihood function for a single observation,

taking its exponential gives us the desired form (5 .57) .

There is one difficulty in the derivation above that must be

clarified before we can regard the theorem as proved . Some parameter

values ai may determine regions in which the observations x l' . .' ' xn

will be impossible, e .g ., have probability zero . The likelihood func-

tions corresponding to different sets of parameter values but the

same observations might have a ratio that is zero or infinite . The

logarithm of this ratio will be indeterminate, and the derivation

that we have just presented will fail to hold .

The difficulty may be remedied quite easily if we can separate

those parameters that define regions of zero probability . Consider

(5 .74 )



the case in which

Let us suppose that it is possible to transform to a new parametri.-

-ation of the likelihood function in which P

Then the likelihood function for n observations is of the

form

(x 1,06,80) = 0 if x >

	

(5 .75)

where f(x j a) is a known function of the j th observation x j and

the parameters a1 , . . . , as, .

From the definition given for sufficient statistics it is clear

that any set of sufficient statistics must include a function of the

form

s l (x l,

	

xn )

I I f(xj a) if x
j
> a l

j=1

min

	

x .
j=1, . n J

is a parameter, say

for all j = 1

if

	

min

	

x
j
< al

j=l, . n

For if' in (5 .75) we vary the parameter a
1

for a fixed set of obser-

vations x1 , . . . , xn , the likelihood function goes to zero

The assumption that we can parametrize the likelihood function in
the form (5 .76) can be regarded as part of the hypothesis of the theorem .
An extension of the Koopman-Pitman theorem to arbitrary parametrizations
of boundaries of the outcome space may be possible, but the version we
have proved here covers all of the probability distributions in general
use .

n

(5 .76)

(5 .77)



discontinuously as a
1

exceeds min x . . Two sets of observations

that differ on min x . cannot therefore be in the same equivalence
J

class ; they would lead to different results for the updating of a

probability distribution on the parameters al , . . . , C6
V,

Consider the likelihood ratio for any two sets of parameter values,

as in (5 .56), for which the sufficient

min x . > max(a1 ,ai)
J

statistic min x . satisfies
J

Providing we consider only the parameter values and observations such

that (5 .78) is satisfied, the derivation given previously shows that

the existence of sufficient statistics implies the exponential form

(5 .57) .

The extension to additional constraints of the form (5 .75) is

straightforward; if the inequality were reversed we would have as a

sufficient statistic the maximum observation rather than the minimum .

In the most general case for a one-dimensional observation x
i

the

outcome space would be contained in a sequence of disjoint intervals

whose endpoints were given by parameters al , . . . , ale .

In the course of our proof we have established the following

important corollary to the Koopman-Pitman theorem :

Corollary 5 .3 .1 : Given that sufficient statistics exist for a proba-

L_Lity distribution (xJa 1, . . . , av ,u`) whose region of zero proba-

l)ility is independent of the parameter values, then a new set of v

(5 .78)

The derivation is exactly as previously stated except that a1 and
the observation generating the minimum are held fixed ; (by virtue of
exchangeability we can take this minimum observation to be x , so we
are setting 61 = 0 and hl = 0) . For details see Jeffreys 142] .
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.sufficient statistics may be written in the form

n
si (xl , . . . , xn ) _

	

vi (xj )

	

(5 . 79)
j=1

Let us now examine the implications of the Koopman-Pitman theorem

together with theorem 5 .2, the solution for the maximum entropy dis-

tribution subject to expectation constraints . We find an equivalence

between the forms (5 .56) and (5 .35) . Any distribution of the form

(5 .57) clearly implies the form (5 .35), and any distribution of the

f',,-))m (5 .57) can be reduced to the form (5 .35) by inducing a new function

4) +,(x) = log V(x), and bringing this quantity into the exponent .

This procedure may involve the addition of another ensemble constant,

c
I+t =

`
CpI+l

(x)le > and another Lagrange multiplier %
I+l' The

implications of theorems 5 .2 and 5 .3 is then that the class of proba-

bilistic models derivable from maximizing entropy, subject to ensemble

constants that are expectations of functions of the random variable x,

is identical to the class of probabilistic models having sufficient

statistics and consequently conjugate families of probability distri-

butions for Bayesian updating of parameters . In view of the derivation

of the entropy principle (theorem 5 .1), these conjugate sampling models

form a class identical to the class of ensembles characterized by a

,-,et of ensemble expectation constants plus the extended principle of

insufficient reason . The implications of this important result will

be examined in the next chapter .

.5 Solutions for Probability Information

Before proceeding with these investigations, we might inquire
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Lf the exponential form of the probability distribution (5 .35) is

maintained if we allow other types of constraints on the ensemble .

The exponential form is not maintained if we allow constraints that

represent knowledge of fractiles of the distribution . Situations

might arise in which it would be desirable to include testable infor-

mation that is not in the form of an expectation or fractile of the

distribution . (For example, (c) and (d) of (3 .10)) . However, we

might expect that mixed expectation and fractile inequality constraints

would constitute the most general case of practical interest in develop-

nr a probability distribution consistent with testable information .

A solution for this case is easily developed using the standard Kuhn-

Tucker conditions of non-linear optimization theory (f93]) . The

derivation will be given for a discrete space of N possible outcomes .

However, the extension of the results to maximization of an entropy

functional defined on a continuous outcome space (Jaynes f36],[10])

is possible using a more general formulation of mathematical programming

([32],[53]) .

Consider the problem of maximizing

-
f

p(x) log p(x)

	

(5 .80)
x

subject to

p(x) > 0 all possible outcomes x

	

(5 .81 )

x
J p(x) = 1

	

(5 .82)

< <Pi (x) NFL > _

	

T(x)p(x) _
x

i = 1, . . . , I
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p(x) < dj , j = 1,

	

, J .

	

( 5 .8~+)
X < X

Constraints (5 .81) and (5 .82) state conditions necessary for

o(x) to be a probability distribution . The constraints (5 .83) repre-

sent knowledge that the expected values of the functions Tl , . . . , TI

be less than or equal to given numbers

'5 .81+) represent knowledge that the cumulative distribution function

evaluated at J points xi, , xJ is less than or equal to given

numbers dl , . . . , dJ .

Since the constraints are linear in the probabilities p(x),

the Kuhn-Tucker conditions are necessary and sufficient for optimality .

_C1' %, i = 1, . . . , I, are the Lagrange multipliers corresponding

equations (5 .83) and µj , j = 1, . . . , J the multipliers corres-

ponding to (5 .81+), these conditions yield, for each outcome point x,

c l ,

log p(x) + T .i cpi (x) + µju(x
i

- x) = a

where a is a constant arising from the normalization condition (5 .82),

and u is the step function

u(y) =
Jl if y>0

0 if

	

0
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, c I . The constraints

In addition we have the complementary slackness conditions that

%I (< Ti (x)IRJ-> - c i
) = 0

	

(5 .86)

a11d

µ1 f

	

p(x) - d . = 0

	

(5 .87)
x<xi

j

(5 .85)



as well as the restriction that

a i >0, i= l, . , I, µ
j
> 0, j = 1, .

The form of the solution is clear from these expressions . Only

those constraints that are binding (i .e ., for which equality holds

it (5 .83), (5 .84) contribute to the form of the solution for p(x) .

Between any two adjacent fractile points x ., x . „ the distribution

has the form of the exponential family . In passing through a fractile

fp .u :ir .t x .
J

whose corresponding constraint (5 .84)

bution p( ) will change by a multiplicative constant .

As an illustration suppose that the outcome space is the set of

_nt:egers 1, . . . , N, and the only information is that the median

of the distribution is K . The maximum entropy distribution is then

uniform on 1, . . . , K and K+l, . . . , N, with the values specified

by

S
1/2 K

	

1 < x < K

1 1/2 (N-K)

	

k < x < N

As a second, somewhat more complex example, suppose that the

outcome space is a set of evenly spaced positive real numbers . The

mean is known to be m and the median is known to be g . Solution

the maximum entropy problem yields the following expression for

the probability of an outcome point x :

µIe %x

	

x < g

µ2 e -~

	

x > g
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is binding the distri-

(5 .89)
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We shall make the usual assumption that the outcome points are suffi-

ciently close together so that we can approximate sums over the outcome

points by integrals and treat

The unknown multipliers

dit:ions :

f ~ p(x)dx =
g
µ1e-~dx + f µ2e -~dx = 1

	

(5 .91)
o

	

~

	

g

Then the equation

firid

µ 1' µ2 , X

f' g

J
P(x)~

	

0

g
µ 1e -~ ~ = 0 .5

0

2
~e -T(x-g)

	

g < x

(5 .93) for the mean can be used to relate the

m -

	

x

	

e-%Xdx
2

[fg
(1-e

-
g )

= 1 (1 - 2e -~`g)(1 + g%) + 1
2%

	

(1 + e -%g )

Tdtunerical means would undoubtedly be required to find 2 as a function

of the known quantities m and g .
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as a probability density function .

are then determined by the con-

(5 .92)

xp(x)dx =
g

µ lxe -~dx +

00
µ2xe - ~dx = m

	

(5 .93)
~o

	

o

	

g

S , .::Lving (5 .91) and (5 .92) for µ 1 and µ2' we obtain

e -

	

0< x< g

multiplier a% to the mean m . Inserting (5 .94) into (5 .93), we

xe

(5 .94)

(5 .95)



Chapter VI

INVARIANCE PRINCIPLES AS A BASIS FOR ENCODING INFORMATION

t

	

Decision Theory and Probabilistic Models

In the last section we developed theoretical foundations for

structuring uncertainty based on two invariance criteria derived from

this basic desideratum :

( .1) exchangeability

(2) the principle of insufficient reason extended to sequences

of outcomes .

me

The remainder of this dissertation will be devoted to exploring

the implications of these invariance criteria to probabilistic modeling

ash statistical inference . The exploration will be brief and by no

ans comprehensive ; much research remains to be done .

It is advisable to begin by reviewing the use of probabilistic

no dell for encoding information in the context of decision theory .

Expositions of decision theory usually deal with a conceptually simple

form for the uncertainty : a probability distribution assigned to a

>e_t of mutually exclusive, collectively exhaustive outcomes . Each

jction available to the decision maker corresponds to a probability

dLstribution assigned to this outcome space, and the optimum action

the alternative whose associated probability distribution yields

the maximum expectation for the utility or value function assigned

y the decision maker to these outcomes . Sequential decisions may

hhe analyzed by using dynamic programming : The sequence of decisions
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and resolution of uncertainty may be structured as a decision tree,

with the solution to be obtained by backward iteration .

Decision tree methods have been applied to exceedingly complex

problems in sequential decision-making (for example, [56]), but the

apil.icability of the method is severely limited by the requirement that

all decision alternatives and possible outcomes be specified in advance .

When repeated decisions or complex information-gathering alternatives

are included, the decision trees can easily exceed the proceeding

capabilities of the largest computers .

The alternative to the decision tree approach is the use of

probabilistic models . A considerable literature exists on probabilistic

mu. :dels from the viewpoint of Bayesian decision theory ([2],[491,L70]) .

Much of the emphasis in this literature is directed at the differences

between Bayesian and classical approaches, and little attention has

been paid to the fundamental justification for the models .

Our basic assumption that probability theory is a means of repre-

senting information leads immediately to the idea that information

it encoded in the choice of a probabilistic model . The invariance

approach allows us to understand the correspondence between states

of information and many of the commonly used models of probability

theory .

The transition to probabilistic models is effected by dropping

the requirement that the uncertainty concerns a single set of mutually

_~xcLusive and collectively exhaustive outcomes . We may assume that

It is assumed that the reader is familiar with these ideas, developed
i si detail in such references as [481,, [681, [70] .
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,,he uncertainty possesses a repetitive structure . Suppose we have

a sequence [xt ] of uncertain quantities defined on the same space

possible outcomes . For convenience we will refer to these sequence

Elements as "observations," although this term may not be appropriate

itl all cases . Usually the parameter t indexing sequence elements

wLIT correspond to time .

Allowing different probability distributions to be assigned to

different elements in the sequence [x t ] provides a general framework

fur modeling uncertain repetitive processes . In some decision situa-

tions we may wish to include an additional uncertainty concerning the

outcome that follows a terminal decision, because the value structure

that constitutes the decision criteria depends on both this terminal

outcome and the sequence [x t ] . The framework is then equivalent

to the formulation of decision theory proposed by Raiffa and Schlaifer

([70], Chapter 1) ; our formulation stresses the repetitive nature

of the experimentation that might be associated with the sequence

We shall not take the time to develop applications of the formu-

lat .on . This straightforward task is left to the reader, whom we

presume to be familiar with the literature on probabilistic models

i'i management science . Even a cursory review of this literature would

require a substantial deviation from our purpose here, which is to

urovide a unified viewpoint on probability theory as a means of encoding

information . We might point out that the repetitive structure [x t ]

sight e applied whenever decisions are made on the basis of repetitive

olo .,ervations . Examples of such decision problems include :
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(1)

O

estimation of the parameters of a population or selection

of a terminal act (i .e ., "accept" or "reject"), on the

basis of a sequence of sample observations . Such problems

have been extensively examined in the literature, and

the Bayesian viewpoint is summarized in such books as

[b9], [70] .

sequential. decision and control problems, such as equipment

maintenance, inventory replenishment, production process

control, and choice of competing processes, in which an

ongoing series of decisions must be considered . An intro-

duction to the literature on these problems may be found

in such references as [2], [24], [67], [76] .

'Stationary Processes : Exchangeable Sequences

In the most general case we might allow the probability distri-

bution assigned to each observation in the sequence [x
t

] to be

i.1'ferent . Such a situation could occur only if the decision-maker

ha,, considerable knowledge about the process that is generating the

It places a considerable burden on the decision-maker to encode

nis knowledge in the probabilistic form needed for a quantitative

lal.ysis .

We shall begin by examining the situation in which the decision-

maker is comparatively ignorant . In particular, we shall consider

rims decision-maker's state of knowledge to be so limited that he

reeves no distinction between the observations . There is no

relevant difference between his information about any group of n
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elements in the sequence xt
1

, xt
2

,

	

. , xt

	

and
n

n elements, xt ,, xt ,, . . . ,

	

where n =
1

	

2

	

n

The sequence [xt ] then constitutes a sequence of

The characterization of the sequence [xt ] as exchangeable implies

two properties :

(1) stationarity : the probability distribution assigned to any

group of n observations xt , . . . , xt

	

is :invariant
1

	

n
to a change in all of the parameter values by some fixed

amount h .

conditional independence of the observations, as implied

by the de Finetti theorem, (5 .1) . The parameters

t

	

serve only as identifying labels ; the nroba-
n

(2)

any other group

l, 2, 5, . . .

exchangeable trials .

bility assignment to any group of n observations must be

invariant under permutation of these the labels . Henceforth,

we will simplify the notation by using integer labels for

the observations :

	

. , xn

We shall examine ways of relaxing these two assumptions later

in this chapter .

Conditional independence implies strong limitations on the infer-

<.ences that can be drawn from a sequence of observations x 1 , . . . , xrl .

Knowle e of some observations affects the probability distribution

assigned to other observations only by revising the state of knowledge

regarding the histogram w summarizing an arbitrarily large number

(f observations, as we saw in the early part of Chapter 5 .
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If the [xt ] process may be characterized as exchangeable, the

uncertainty about the process is equivalent to the uncertainty about

the histogram cu . If we know the histogram cu, then any group

of observations xl , . . . , xn may be regarded as independent, iden-

t,ically distributed random variables whose probability distribution

corresponds to the histogram w . The simplification over a decision

tree approach is that we do not need to consider all the different

possible ways of achieving the same histogram . From the exchangeability

assumption the different ways are judged to be equally probable . The

essence of inference on an exchangeable sequence is the characterization

of the histogram cu . It is this distribution that provides the likeli-

hood function (xlw ,€) that is the fundamental element of Bayesian

('-.rid classical) statistics . The histogram w is the uncertain outcome

for a process generating exchangeable observations [xt ] . Knowledge

of a) might be considered statistical perfect information : the

situation in which the probability distribution is "known" in the usual

;cerise of classical statistics . Further information that changes the

probability distribution assigned to an observation or a group of

observations would violate the exchangeability assumption, but of

course inference is still possible using Bayes' Rule if a conditional

orobability structure has been assigned .

The difficulty inherent in developing a general formalism for

inference on an exchangeable process is the dimensionality of the

outcome space . Unless the set of possible values that the observations

may assume is limited to a small number of discrete points, the

limensionality of the possible histogram cu becomes unmanageable .
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We need a means of reducing the dimensionality of w to a level

consistent with available analytic resources . There are two possi-

bilities . The first is the postulation of a "model space," i .e ., a

set of possible histograms cud for d c D of which one is assumed

to generate the data . Such an approach has been discussed by Murray

and Smallwood [58], [59], [79] and Matheson [55] . The observation

x l , . . . , xn are used to update a probability distribution on which

histogram represents the "true" distribution that will be achieved

by an arbitrarily large number of observations .

The difficulty with such an approach lies in defining a suitable

model space . The choice of a set of possible histograms determines

the level of complexity, hence the cost of the analysis, and this

choice implicitly encodes subjective information by eliminating other

)o ;sible histograms on the outcome space . It would seem desirable

to have general principles for the selection of a "model space" rather

than being forced to rely on an ad hoc procedure .

Another means of reducing the dimensionality of the histogram

w to a manageable level derives from the basic desideratum . The

extended principle of insufficient reason permits us to overcome the

dimensionality problem in assigning a likelihood function if we can

represent the relevant information by a small number of constraint

relations on the histogram w .

In the limit of a large number of observations, one histogram will

result from more outcome sequences than other possible histograms by

art arbitrarily large margin . The problem of finding this special

histogram may be solved by maximizing the entropy functional of the
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-Probability distribution subject to the given constraints, as we saw

in Chapter 5 . From the assumptions of exchangeability and the extended

principle of insufficient reason, this histogram will be realized

with probability one in a large enough sequence [x t ] .

The extended principle of insufficient reason for exchangeable

sequences provides a direct link between states of information and

many familiar probability distributions . This link may act in either

direction . For a given state of information the principle will specify

which probability distribution is appropriate for [x)w ,6) . The

rik may be used in the other direction when a specific form is proposed

a .- the likelihood function in a problem involving repeated observations .

By using the extended principle of insufficient reason we can determine

the state of information that corresponds to this probabilistic model,

and we can then ascertain if this state of information really reflects

what the decision-maker believes .

Let us now examine some specific models, using the results of

Chapter 5 . Solutions of the maximum entropy problem for various

probabilistic constraints of the expectation type were tabulated in

table 5 .1, and these have a clear interpretation in terms of the

extended principle of insufficient reason . We have already examined

one example in Chapter 5 . If the outcome space of the observations

x lies in the set of non-negative numbers, and the state of infor-

.nation is that all sequences having the same mean are equally probable,

then the extended principle of insufficient reason indicates that the

,:exponential distribution is the appropriate likelihood function for

log



this exchangeable sequence .

Let us examine the link from the other direction : if an exponential

distribution is used for the likelihood function, then this model

implies that all sequences having the same mean are equally likely .

This viewpoint on the exponential distribution will be familiar

to many readers ; it is in fact a basis for the axiomatic derivation

ci the Poisson process

	

that is equivalent in this special case to

the general maximum entropy derivation in Section 5 . For other dis-

t-:ributions the reasoning is equivalent but not as familiar . If

sequences with the same mean and variance are judged equally probable,

the appropriate likelihood function is the normal . This result gives

-uc an insight into the meaning of the central limit theorem ; the normal

distribution corresponds to a limiting state of information in which

only knowledge of the mean and variance of a random variable remain .

ft sequences having the same mean and geometric mean are judged equally

probable, the corresponding likelihood function is a gamma distribution .

This list can be continued to generate many commonly used distri-

butions . Other distributions such as the Weibull and Cauchy may be

generated by a transformation of variables from a maximum entropy

distribution such as the exponential or uniform (Tribus, [85]) . As

We avoid the difficulties of inherent in defining entropy on a
continuous probability space by finding the maximum entropy distribution
for a discrete space of N outcome points, then letting N go to
infinity and approximating the sum over possible outcomes in the par-
tition. function as an integral . See the footnote of page 81 .
-Y-)(-

A Poisson process is a counting process with exponentially distributed
interarrival times . The axiomatic derivation and the characterization
in terms of the distribution on interarrival times may be found, for
example, in Parzen [62] .
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we remarked in Chapter 5, the Bernoulli case is special because the

uutcome space has only two points . The histogram specifying the results

,c, f a large number of trials has only one degree of freedom, so the

extended principle of insufficient reason is not necessary . The assump-

Lion that the observations [xt] form an exchangeable sequence specifies

the model up to the value of a single parameter .

The theorems (5 .2) and (5 .3) imply that if the extended principle

of insufficient reason is applied subject to expectation constraints,

< Ti (xt )Ie > = c
i

	

(6.1)

the resulting probability distribution has additive sufficient statistics .

Moreover, if a probability distribution has sufficient statistics and

known boundaries delineating the regions of zero probability, then the

sufficient statistics may be written in the additive form

The number of observations n is a known auxiliary statistic, and

the equivalence classes for the statistics are clearly unchanged if

we use the form (6 .2) instead of (5 .59) .

(5 .2)

n
s i (xl , . . . , xn ) = n E (P _i (xj )

j=l

and (5 .3) we can characterize the state of information that

-_earls to this probability distribution using the extended principle

of insufficient reason : All sequences of observations that lead to

the same value for the sufficient statistics

in (6 .2) must be equally probable . But s i

i = l, . . . , I .

From the results of theorems

s i ,

is the sample average

c )f'

	

function cpi . By the strong law of large numbers,

ill

i = l, . . . , I,

(6 .2)



I
n

n E CPi (x .) = si (n)
J=1

= ci = ~ Ti (xt ) I cu )6>

a n

	

We may regard this result as the basic ergodic theorem

'or exchangeable sequences . The equivalence between the limit of

. ;efficient statistics that are sample averages and the expectation

over the probability distribution corresponding to w gives us a

f'~zidamental insight into why expectation information is important .

In the case of fractile constraints, it does not appear to be possible

to summarize the content of a group of observations by sufficient

statistics except

(1) in the case where the fractiles are 0 or 100 per cent ;

i .e ., they define the boundaries for regions of zero

probability, or

(2) when the number of observations is essentially infinite .

The extended principle of insufficient reason reduces the problem

of inference on an exchangeable sequence from inference on the histogram

u to inference on the value of parameters c,
i

of equation (6 .1) .

Viewing the situation from the other direction, it is the fact that

all sequences having the same (sample) average value for the functions

T (xt ) are equally probable that allows the inference on the parameters

c . to proceed in such a simple fashion : we need only keep a record
i

of the sample averages (6 .2) : these averages are sufficient statistics

for inference on the parameters c
i

. Any inference involving sufficient

statistics is equivalent to this process, excepting the case in which
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the inference is on the boundaries of a region of zero probability

ir, he outcome space .

An exchangeable sequence characterized by the extended principle

of insufficient reason subject to a set of expectation constraints

is then specified by the current state of knowledge concerning

the parameters ci ,

	

= 1, 2, . . . , I . These parameters are defined

operationally through equation (6 .3) ; that is, they are interpreted

an average over the frequency distribution that would result from

a long sequence of observations [xt ] . The probability distribution

{c , . . . , c I J.J} on the possible values of these parameters, assigned

on the basis of a state of information -led , completes the specification

of probabilistic structure .

To recapitulate, knowledge of the [xt ] process has been encoded

ir : the following :

(a) assumption that any finite sequence drawn from the [x
t ]

process is an exchangeable sequence

(b) assumption of the extended principle of insufficient reason :

All sequences having the same sample average values of

the functions Cpi (xt ), i = 1, . . . , I, are equally

probable

(c) the probability distribution. [c1 , . . . , c l f,e'L} assigned

to the limiting values

1 n
c . = lim - F, (:pl. (xt .) -i

n - co
n

j=1

	

J
(6.5)

The literature in the Bayesian school of statistics has concentrated

nlinost exclusively on stage (c) of the encoding process, the encoding of
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prior knowledge on distribution parameters, while (a) and (b) have

been implicitly assumed. The distribution

that reflects the initial prior state of information may be quite

art[trary, but if subsequent information is strictly in the form of

l,_;ervations from the process, then the family of possible posterior

zistributions reflecting the state of information after the observations

nave been assimilated may be written in a simple form . Since from

theorems 5 .2 and 5 .3 the likelihood function for n observations must

Le of the form

(x1, . . . , xn lei , . . . , c 1)8)
(6 .6)

I
=

Z_n
exp

	

nXi s i (xl,

	

, xn )
i=1

n
where s i (x1, . . , xn)

	

n E cp .(x .) is the sample average of the
j=l J

function cpi , i = 1,

	

, I . The distribution depends on c 1 , . . . , c I

through the functions 7 .i = 7 . i (c 1 , . . . , c
I

) and the normalization

function

I
Z = Z(T l , . . . , ~ I ) =

	

expi L.. T.i (p (x)

	

(6 .7)
x

	

,i=i

since c i

	

(pi ( x)IuO >, we see that

c i = da
log Z %1 , . . . , ~ I )

	

( 6 .8)
i
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;living the c1 , . . . , c I in terms of the functions %1_ , . . , XI ,

or alternatively, these relations (6 .8) can be used to determine the

~, , . . . , a.I in terms of the c1 , . . . , cl .

In applying Bayes' rule to revise the probability distribution

c l , . . . , c I the normalization function cancels .

If the likelihood function is of the form (6 .6), then the posterior

distribution will be of the form

(cl

	

, cI Ix1 , . . . , xn,60)

l I
(Z*) -lf c1 , . . . , c I )exp

	

n%i s i (xl ,
i= l

on the constants

x )'
n~

where Z* is a new normalizing function determined by the requirement

that the total probability for all values of the outcome space of the

. . . ) c I be equal to one .

Since the functions % i (c l'

	

, cI ) do not depend on the obser-

vations, the additive statistics

n
s i (x1 ,

	

, Xn) = n E (Pi (xj )
j=1

and n, which are of fixed dimensionality, specify the posterior

distribution . It is sometimes convenient to think of n and the

(x1 , . . . , xn) as defining a parameter space, each point of which

corresponds to a posterior distribution . The effect of more obser-

vations x
n+l' xn+2' . ._ is to cause transitions to new points in

the parameter space ; these transitions are stochastic in the sense

that the posterior values of the statistics
"
i are not known prior
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to the observations . This approach of using a parameter space defined

by the sufficient statistics (relative to a given prior distribution

I
1

,cI IF) has been widely applied to problems involving sequential

sooipling decisions (Bather f3], Bather and Chernoff [4], Chernoff [71,

Chernoff and Ray [8], Lindley [48], Lindley and Barnett [50], Pratt [64],

Wetherill [91]) .

Prior Probability Assignments to Parameters

A remaining question is that of encoding the original prior proba-

li.ty distribution (c l, . . . ,cI le) on the parameters {c 1,

	

,cl l~}

co)rresponding to the long-run averages of the functions Cp
.,

	

' cp IP

n
c i = lim

n
E cp i (x .)

n -).

	

j =1
(6 .10)

h ch has been written on this question of encoding probability distri.-

lotions on distribution parameters, and we do not propose to summarize

this voluminous literature here . The methods for encoding a probability

uistribution on a set of uncertain quantities apply here in the same

way as any other ; the conceptual basis for the encoding is the oper-

cctional definition (6 .10) of the parameters (c 1 , . . .,cl l61 in terms

of a long-run frequency average computed from exchangeable observations .

There are certain special situations in which it is possible to

u~)ply invariance principles directly to the encoding of the prior

d.i.stribution (c l , .. . , c,IO) on the distribution parameters

	

cl ,

	

' c I

This use of invariance principles is due to Jaynes [40], and in large

uirt it has motivated the present work . Suppose that the decision-

.poker's state of information has the following property . If the problem
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i. transformed into a new set of variables x*, ci, . . , cI according

to some given set of transformation equations, the decision-maker is

unable to distinguish the transformed problem from the original problem .

HLs state of information is the same for both the original and the

transformed problem, and therefore by the basic desideratum he should

assign the same probability distribution in both cases .

specified by these constants and the extended principle of insufficient

reason ; any two sequences of observations having the same mean and mean

square are judged equally probable . For convenience it is useful to

use a parametrization in terms of a location parameter µ and a scale

parameter a :

(6 .13)
Q
= V c2

- c1 or
a2

+ p. = c2

Clearly a joint probability distribution on c1 and c
2

implies a

,joint probability distribution on µ and a and visa versa, since

one may transform from one set of independent variables to the other

is ng well-known techniques for change of variables .
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An example will help to clarify the reasoning involved . Suppose

that we have two constants

c l lim
n

n

	

x . = < x I LO > (6 .11)

c 2

n -i .0

lim

j=l J

< x2 1 > . (6 .12)
1 n
n ~ x~ =

The distribution on the exchangeable

j=l

observations x1 , x2 , . . . is



Then we will take our problem to be that of specifying a joint

probability distribution {µ,ale] on the location parameter µ and

the scale factor (1, where 92 _

	

( - < xle >) 2 le >

Suppose that we are ignorant of µ and a in the sense that

any linear transformation on x yielding new parameters p* and c*

Lead,; to exactly the same state of information : the decision maker

cannot distinguish between the two problems . If

then in order for the prior distributions to be the same for both the

Original and the transformed problem, the probability density function

f(µ,6) must satisfy the functional equation

f(µ,a) = af(µ + b, a6) .

The solution to this equation is ([24])

µ = µ + b

c = as

	

(6.14)

x* - ti* * = a (x - ~1. )
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(6 .15)

f(µ6) _
constant

	

(6 .16)f(µ, Cr)

which we may take to correspond to a state of "complete ignorance"

about the zero point µ and scale factor a ; this distribution remains

invariant to an arbitrary change in zero point and scale factor . This

form of a prior distribution to represent complete ignorance of a zero

point and scale factor was initially proposed by Jeffreys [43] .



0 .4 More Complex Applications of Exchangeability

In the preceding sections we have developed a framework for encoding

information about an uncertain sequence of outcomes, [x t ], providing

that the individual sequence elements were exchangeable . We noted that

exchangeability is an invariance concept that proceeds from the basic

desideratum. If permuting the sequence elements does riot change our

state of information then it should not change the joint probability

distribution that we assign to these sequence elements . The limit

of perfect information about an exchangeable process corresponds to

i-snowing the histogram of observed outcomes for a large number of

sequence elements . The probability distribution assigned to any unknown

sequence element xt is equal to this histogram in the limiting case

of perfect information . In this limit the probabilistic models derived

from exchangeable sequences are equivalent to sequences of independent,

identically distributed random variables . Without perfect information

we must deal with the problem of inferring this histogram that is

equivalent to the probability distr=ibution for the independent random

variables .

Exchangeability can provide the conceptual basis for probabilistic

models in other situations besides the case of independent, identically

distributed random variables . Continuous random processes, time varying

,processes, and. Markov-dependent processes may all be analyzed in terms

of exchangeability . We shall now sketch very briefly how the exchange-

ability concept could. b e generalized to these more complex situations .

Let us first consider the case of a continuous observation process

A simple generalization of the exchangeability concept is to
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a1_?ply it to increments of the [x1 ] process rather than the process

itself . A derivative process [yt (h)] is judged to be exchangeable

for any fixed value h, where the sequence elements of the derivative

process are computed from the original process

Yt (h) = xt+h - xt .

It' the index set t for the [xt ] process is allowed only to

istaree discrete values, constructing an incremental process

[xt ] by the relation

(6 .17)

a trivial extension of our previous analysis . For a continuous obser-

vation process [xt ] exchangeable increments
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Yt (h)

is a strong assumption

with strong consequences . Exchangeability must hold for increments

of any size : for h > 0, any sequence of non-overlapping increments

[1-;t(h)] must be exchangeable . Likewise, a sequence of non-overlapping

increments [y 11 (h/n)] must also be exchangeable, for any integer

n== 1-,2,3, . . . .

Let us now examine the consequences of de Finetti's theorem .

Both of these sequences must be composed of random variables that are

conditionally independent : A histogram constructed from sequence

elements becomes equivalent to the probability distribution assigned

too one of these exchangeable elements . Then an increment yt (h)

con be written as

n-1
Y t (h) = Z yt+jh/n (h/n)

	

(6 .18)
j=o

were the yt+

	

are independent and identically distributed
jh/n

ruundom quantities . The values of n and h may be chosen arbitrarily,

aol we may draw the following conclusion . For any integer n, an



increment of the process may always be written as the sum of n inde-

7ncrndent and identically distributed random quantities . A random

v!:~riable possessing the property above is said to be infinitely

.-visible .

Two examples will illustrate continuous observation processes

[x t, ] whose increments are infinitely divisible, the Wiener (or normal)

process and the Poisson process . For the Wiener process yt (h) will

ke normally distributed with mean zero and variance a 2h, proportional

to the increment size h ; yt (h) is equal to the sum of n independent,

identically distributed normal random variables with mean zero and a

variance of a2/nh . We shall consider a general Poisson process in

which xt undergoes discrete jumps of a fixed but arbitrary size u .

(The usual case of the Poisson process is u = 1 .) If V denotes

tie intensity, the mean number of jumps per unit time, then the proba-

t l_ity distribution assigned to an increment of the process is

(yt (h) = jute) = ( Vh) O e -Vh

The increment yt (h) is equivalent to the sum of n independent and

identically distributed (Poisson) random variables, each having discrete

jumps of size u occurring with an intensity of V/n per unit time .

The most general case of infinite divisibility consists of a sum

of (independent) Wiener and Poisson processes . If a continuous process

aas infinitely divisible increments, it may be written as a sum

xt = yt + nt + J z(u)

	

(6.20)
u

a fixed trend of y per unit time, a Wiener process n t , and a sum
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' Poisson processes having various (positive and negative) jump sizes

u . This characterization of infinitely divisible processes is very

strong . We need only specify the fixed trend 'Y per unit time, the

drift rate c2 of the Wiener process, and the intensity v(u) as

a function of the jump size of the Poisson process components, and

we have specified the [xt ] process completely .

There is a considerable literature in advanced probability theory

anc stochastic process theory on infinite divisibility, and it is

Z:Mssible to make the foregoing assertion on the general form of an

i_rLfinitely divisible process precise and rigorous . The assertion

proved using a representation theorem for the characteristic function

of an arbitrary increment

f'oiind in Loeve [51-1, sections 22 and 37, Doob [12], or Gnedenko arid

tolmogorov [25] . Our interest enters on the fact that this area of

t}he literature of probability theory may be related to an invariance

principle, for as we have seen, infinite divisibility is immediately

implied by the concept of exchangeability for the increments of a

s°ontinuous process .

More general applications of exchangeability rely on the following

extension of the exchangeability concept, suggested by de Finetti [21] .

Consider a sequence of uncertain quantities [xt ] defined over the

space . We shall define the sequenceme outcome

yt (h) . The rather arduous details may be
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to be conditionally

exchangeable if these quantities can be sorted into disjoint classes

x

	

in such a way that the sequence elements x t , xt ' , .
1

	

2
within each class are exchangeable . For an exchangeable sequence all

:roquence elements must be exchangeable, but for a conditionally



exchangeable sequence it is only necessary that the sequence elements

in each class be exchangeable, i .e ., the joint probability distribution

assigned to these elements must be invariant to any arbitrary permu-

h;ation of the elements within a class .

One of the simplest applications of conditional exchangeability

i. : to time-dependent models . The elements xt of an observation

process [xt ] are sorted into classes according to the time index t .

A coin tossing process in which two different coins are tossed alter-

nately illustrates how conditional exchangeability can be applied to

cyclical or seasonal processes . Tosses of the first coin would occur

_)n odd-numbered trials, and tosses of the second on the even trials ;

the classes whose elements are judged to be exchangeable are then the

odd numbered trials and the even numbered trials . The inference problem

concerns the histograms for odd and for even tosses . Each histogram

s determined by one number, the long-run fraction of heads, and

knowledge of this fraction for odd and even tosses would constitute

perfect information for the process .

Instead of being determined a priori the assignment of sequence

elements to the exchangeable classes may depend on the outcomes of

selected sequence elements . Renewal . processes are of this type . An

example might be machine replacement, in which a machine is observed

t<o work or to fail at each period t . If machines that fail are

replaced by new machines, the time since the last renewal (e .g ., the

ape of the machine) constitutes the criterion for sorting machine

performance data into exchangeable classes .

If the exchangeable classes are defined by the observation

123



immediately preceding, then conditional exchangeability forms a natural

basis for Markov models . For a discrete time index observations

xt , xt , xt , . . . will be judged exchangeable and only if the preceding

1

	

2

	

5
outcomes xt

-1' xt -1' xt -1' . . . are all equal . The inference problem
1

	

2

	

3
for such a Markov model involves a separate histogram for each possible

outcome of a sequence element x t ; the set of such histograms determines

the transition probability matrix that is the focus of the analysis of

Markov processes .

More complex Markov models can be constructed by taking more of

the history of the process into account in setting up the exchangeable

classes . Breaking an exchangeable class into two separate classes is

equivalent to splitting a Markov process state into substates . Likewise,

merging the elements of several exchangeable classes into a single class

is> equivalent to coalescing several Markov process states together into

one state .

The concept of exchangeability leads naturally to a partial ordering

among models . At one extreme is the situations in which all sequence

elements xt are considered exchangeable ; there is only one class and

the decision-maker's state of information is invariant to any permu-

tations of elements . If the decision-maker compares the original

sequence [xt ] with a rearrangement and finds that they do not corres-

xnond to equivalent states of information, then at least two classes

off exchangeable elements are required. At the other extreme is where

no permutation of sequence elements will result in an equivalent state

of information .

A limiting case of a conditionally exchangeable sequence occurs

124



when each observation x t in a sequence [xt ] must be placed in a

separate class, so no two observations are exchangeable . Exchangeability

i . then a vacuous concept, since observations cannot be summarized by

histograms ; there are no long-run fractions . The encoding process must

cuisist of assigning probabilities to each combination of possible

o tcomes for the sequence [x t ] . One is forced to use a tree structure

or its equivalent, with probabilities assigned separately to each

outcome in the sequence, conditional on all of the outcomes that have

preceded it . The exchangeability concept will only have value when

many information-equivalent permutations of sequence elements exist,

and it is possible at least conceptually to consider the possible

histograms that might result from a large number of sequence elements

in one class .

Whereas for exchangeable sequences the inference problem deals

with the histogram that would result in the limit of a large number

of sequence elements, for a conditionally exchangeable sequence a

separate histogram will be constructed for each class a1' a2'
and the inference problem will concern these histograms jointly : of

a L1 the possible combinations of histograms, on 1 for al , cu 2 for

etc ., which set of histograms will result from a long series

o`_' observations of the process . This joint inference problem is likely

tc be extremely formidable unless it is possible to separate the infor-

mation that pertains to each class a
i

, that is, if observations in

class ai only change our state of knowledge about the long run histo-

pram that will result from a large number of observations in class a i .

Further, information about the histogram that results from a large
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rumber of observations of class aj , j / i, will not be changed by

observing one or a number of sequence elements in class a . . When
i

such a separation of information is possible inference on a conditionally

exchangeable sequence becomes equivalent to a great many inference

problems on exchangeable sequences, one for each class a i . The extended

-rrinciple of insufficient reason may be used to reduce the dimensionality

of the inference problem to a manageable level, as we have discussed in

Section 6 .2 and in Chapter 5 .

Unfortunately, the inference problems that are actually encountered

may not possess this separation property . By flipping one coin we may

change our assessment of the limiting fraction of heads for a second

coin . Methods for dealing with such joint inference problems should

be a goal for future research .
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Chapter VII

TESTING INVARIANCE - DEEIVED MODELS

7 .1 The Form of the Test

In previous chapters we have seen how invariance principles may

be used to generate specific probabilistic models . The basic desider-

atum that equivalent states of information must lead to the same model

forms the foundation for the invariance approach . A model summarizes

relevant information in explicit form, and as the state of information

changes over time it may be necessary to revise the models that summarize

this information .

The invariance approach to probabilistic encoding of information

is based on the decision-maker's assessment of equivalence between

states of information . The Ellsberg urn examples of Chapter 2 provide

simple situations in which this equivalence seems intuitive . Many

()they examples exist in which the equivalence is based on physical

symmetry, e .g ., a fair coin, fair die or wheel of fortune . Our strength

of belief in this equivalence may vary from one situation to the next,

and in particular we may question an equivalence that was originally

assumed after additional information has been received . In order to

make proper use of the invariance approach to probabilistic encoding

we should have a means of revising the original invariance assumptions

a ;; more data becomes available .

Additional information rarely provides grounds for stating that

a probabilistic model is wrong . Such an inference only follows if the
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information was judged impossible a priori on the basis of the model .

Usually information is judged more or less improbable, and even a

very improbable result cannot be said to invalidate a model .

Perhaps the best way to approach the difficult problem of testing

i.tnvariance - derived models it to examine a simple case . Suppose that

we are given a coin presumed on the basis of our experience to be

"fair ." We toss this coin twenty times and observe the result, which

might be

(a) T T T T H T T H H T T H T H H H H T T H

(b) H H H H H H H H H H H H H H H H H H H H

Result (a) will not lead us to question our model that the coin is

fair, while with result (b) we will feel that we have strong grounds

for questioning whether tosses of this coin are really Bernoulli trials

whose limiting long-run fraction of heads is one-half . Yet on the basis

of the assumed model, both results (a) and (b) would have been assigned

the same a priori probability, namely, one chance in 2 20, or about

1.o 6 . It is the fact that the outcome (b) of twenty straight heads

is so much more probable than outcome (a) on the basis of alternate

models (e .g ., someone has given us a two-headed coin) that leads us

to question whether the fair coin model is adequate to represent the

new state of information .

The fair coin represents about the simplest conceivable invariance

model . The assumption that tosses of the coin form a sequence of

exchangeable trials follows from the fact that no causal relationship

is perceived that would allow the results of one toss to influence

another, and the properties of the coin-tossing mechanism are assumed
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to stay constant over time . The symmetry of the coin motivates the

application of the criterion of insufficient reason in assigning the

probability of heads (equal to the expected value for the long-run

fraction of heads) . We have no reason to distinguish between the

two possible outcomes of heads and tails, therefore our state of

information is unchanged if these outcome labels are interchanged, and

we must assign to heads a probability of one half . For other invariance

models such as those mentioned in Chapter 6 we can proceed through a

similar chain of reasoning . We shall develop the concepts we need to

test the invariance assumptions of the "fair coin" model . The extension

to the case of more general invariance models is straightforward .

To reexamine the "fair coin" model based on the additional infor-

mation gained by observing the results of twenty flips we proceed in

a familiar way, starting with Bayes' Rule . Suppose we had assigned

a prior probability of (mje) to the event that the fair coin model

is correct (that is, any subsequence of tosses selected prior to knowing

the results would have a limiting fraction of heads that approaches

one half) . The likelihood function for any sequence of n tosses of

a fair coin is

(EIm,e) = ( 2) n .

	

(7 .1 )

In order to proceed further we need to specify the possible alternatives

that could occur if the fair coin hypothesis proves false . It is this

complication that causes most of the difficulty . Suppose we could

specify some alternative model m* and require that either the fair

coin model m or the alternative m* hold true :

129



The likelihood function (Elm*,E) is presumed to be a known function

of the data . For example, if m* were the model that the coin has

two heads, we would have

(E = n heads in

We) + ( m*IC) = 1 .

	

(7.2 )

(E = any other result

n tosses Im*,€) = 1

Now it is a simple matter to use Bayes' Rule to revise our prior

probability assignments on the two models m and m* to reflect

riew data E

(mIE,E) _
	(EIm,e)(me)
(EJm,e)(m!e) + (E I m*,U`)(m*Ie)

(m* I E,CF) _	
(E m*,e) (m*Ie)	

(EJm,e)(m IC) + {Elm*,€){m-*{LC)

= 1 - (mIE,e)

If the original state of information led to the probability assignment

of one chance in a million that the coin was not fair, the posterior

probability that the coin is not fair is about 50 per cent .

The problem with this analysis is that it ignores the multitude

of ways in which the fair coin hypothesis might be violated . The

limiting fraction of heads might be somewhere between 0 .5 and 1 .0,

or perhaps the flips cannot be considered as independent trials and

a Markov model is needed to describe their probabilistic behavior .

We would like therefore to eliminate the normalization requirement

(7 .2) from our analysis . We can accomplish this objective by choosing
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Im*X) = 0 .
(7 .3)

(7 .4)

(7 .5)

(7 .6)



to work with ratios of probabilities . Dividing (7 .4) by (7 .5) yields,

(mIE,e)
-

	 (Ejm,e)(mjg)

	

(7.7)
{m*IE,e}

	

{Ejm*,e}{m*let

This quotient form of Bayes' Rule avoids the need for a normalization .

We can speak of the odds in favor of one hypothesis compared to another

without reference to additional hypotheses that might also be possible .

In our example, we could say that a fair coin was a million times more

probable than a two-headed coin, but after observing twenty straight

heads the posterior probability assignments are approximately even .

We may gain some additional insight into the implications of the

observed data on the comparison between two alternative models if we

change (7 .7) from a multiplicative to an additive form by taking

logarithms . Good [271, Jaynes [35] and Tribus [83], [85] have suggested

using base 10 logarithms, multiplied by ten to achieve a scale that

is intuitive for many engineers . The logarithm of the odds is defined

to be the evidence function

ev(m :m*jg) = 10 log We)
10 (in* 16)

and is measured in decibels (db) . A table

and evidence in decibels is found in [85] .

the quotient form of Bayes' Rule (7 .7) may

ev(m :m*IE,e) - ev(m :m*le) = 10

The difference between the posterior evidence and the prior evidence

for one hypothesis as opposed to another is the logarithm of the likeli-

hood ratio (multiplied by ten in order to have the units be decibels) .

{EIm,60}
log {E M*

	 '601

(7 . 8)

for conversion between odds

Using the evidence function,

be written as

(7 .9)



Before we can use (7 .9) we must select the model m and an alter-

native m* . Since the model space M may be large, the selection of

the alternative model m* poses a difficulty . We adopt a worst case

approach. This approach to the problem of selecting an alternative

model has been suggested by Jaynes [4l] and Tribus

useful when the model in is derived from invariance assumptions that

imply equivalence between probability assignments ; relaxing these

equivalences may permit a large set of possible alternative models .

Suppose we choose m* so that the difference between the prior

odds and the posterior odds for m compared to m* is made as large

as possible . Equivalently, we could choose m* to give the prior

evidence function minus the posterior evidence function its maximum

value . This choice is equivalent to making the log likelihood ratio

in (7 .9) a minimum, or, since m* only enters

[831, [85] .

	

It is

the denominator, to

make the likelihood function (EIm*,(!~) a maximum by choosing the

proper model m* in the model space M .

The principle of choosing a model that maximizes the likelihood

function is well established in the "classical" school of statistics

that is based on a frequency interpretation of probability . The justi-

fi_cation for this principle here is quite different, because prior

information is used explicitly . The model m* is chosen after the

experimental results E are known, and it is the strongest competing

model+ to m in the model space M . No other model will give a larger

shift in the odds in going from the prior state of information (without E)

Tribus [831, [8] refers to m* as the "Monday morning quarterback
hypothesis ."
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to the posterior state of information that includes E . Let us now

examine how prior information about the models m and m* is used .

Suppose that prior to knowing E the model m is considered much

more probable than m*, say ev(m :m*lg) = k . (Of course, we did not

know what m* was until after E was known, so we must make this

assessment on the basis of the "past" state of information, e ) . If

the posterior probabilities assigned to m and to m* are to be roughly

equivalent, the posterior evidence function must be approximately zero,

implying that the logarithm of the likelihood ratio must be about -k .

The log likelihood ratio must be negative, since m* maximized the

likelihood function (Ejm*,e) over all models in the model space

includi ng the model m . If the log likelihood ratio is considerably

greater than -k, it is clear that the posterior probability assigned

to m is much greater than to the model m* . We can usually stop

at this point : The data does not seem sufficient to overturn our

belief in the model m . If the log likelihood is equal to or less

than

	

(i.e ., more negative) on the other hand, the data plus prior

information signify that our assumption that m is a suitable model

of the process should be subject to serious question . The actual

decision as to which model or models should be used for an analysis

should include the economic considerations ; the decreased value of the

analysis if a simple invariance model is not appropriate must be

balanced against the increased cost of a more complex model in which

some of the invariance assumptions have been relaxed . These economic

considerations may often be passed over quickly because the :inferential

aspects predominate : The log likelihood ratio either greatly exceeds

orr falls short of the threshold -k established by prior information .
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Let us return to the coin tossing example . The fair coin model

m implies that tosses are Benoulli trials with a probability of heads,

equal to one-half . We are considering two possible experimental

results, (a) a sequence containing nine heads in twenty tosses (see

page 128), and (b) a sequence of twenty straight heads .

Suppose first that the model space M is the set of all possible

sequences of heads and tails in twenty tosses . The model m* specifies

the sequence exactly, and there is no remaining uncertainty . If the

experiment were to be repeated under conditions that we perceived to

be identical then the same sequence will result from the second experi-

ment as the first . The likelihood function {EIm*M = 1 for both

sequences (a) and (b), and the likelihood ratio for m relative to

nix is 2-20
ti

10 6 , giving a log likelihood ratio of -60 decibels .

Now let us examine the prior assignment to m* for the case in which

this model is based on the sequence (a) . The model m* implies that

experiments consisting of twenty tosses of the coin generates exactly

this sequence . Since there are 10 -6 possible sequences of 20 tosses

and since (a) has no readily apparent structure, it would seem reason-

able to assign a very small prior probability to m* : say 10
-24 .

fl'ha_s is equal to 10-6 of getting this particular sequence (all sequences

considered equally probable on the basis of insufficient reason), times

a very small probability (10-18 ) that the sequence will repeat itself

exactly on subsequent experiments . The prior odds are then -240

(decibels, and the posterior odds -180 db, the prior probability assigned

to sequences repeating, a very small number . At this point we doubt

-,hat the fair coin model should be rejected in favor of the hypothesis
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that every sequence of twenty tosses will produce the result (a) ; if

sequence (a) resulted from four successive experiments, however, we

would consider rejecting the fair coin model .

Suppose that the sequence (b), twenty straight heads, results .

The model m* is then that in every sequence of twenty tosses, all

tosses will be heads . This hypothesis has more plausible explanations :

A magician may have substituted a two-headed coin, or the coin is being

tossed using a special coin-flipper that always results in the outcome

he-Ads.

Therefore, in the case of (b) we might assign a prior to m* that

is much higher than for (a), say 10 6 . This assignment would imply

that the posterior odds of m, compared to m* are about even ; we

assign about the same posterior probability to the fair coin model

a; to the hypothesis that all tosses will be heads .

Suppose that we choose as our model space M the class of all

possible exchangeable sequences . The tosses are presumed to be Bernoulli

trials indexed by an unknown parameter p, the long-run fraction of

heads = the probability of a head on any arbitrarily chosen toss . Let

us consider the likelihood function

is a maximum for p = 0 .45 . We find that the likelihood ratio for

p == 0 .50 (the fair coin model) versus p = 0 .45
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(EJm*,e) for sequence (a) . It

is about 0 .90, and

the log likelihood ratio is -0 .4 db . The posterior evidence function

i . . :; barely different from the prior evidence function ; the posterior

odds are reduced by a factor of ten per cent from the prior odds in

OU course, such hypothesis might be checked directly . We shall pretend
that such checks are not available .



this worst case . For any other model mo chosen from the Bernoulli

class, the difference between the prior odds for the fair coin models

versus in and the posterior odds will be less .
0

For sequence (b) the likelihood function (Elm*,e) attains a

m-ezx nnsn for p = 1, and the log likelihood ratio is -6o db . The

posterior odds for the fair coin versus a Bernoulli model with p = 1

are reduced by a factor of 10 from the prior odds .

For a sequence with two heads in twenty tosses we obtain a log

likelihood ratio of -32 db . If the result had six heads in twenty

tosses, we would get a log likelihood ratio of -7 db, corresponding

to a reduction in the odds by a factor of about five .

We could also test the fair coin model against models in the

M<n-rkov class, in which the probability of a head is allowed to depend

on the result of the preceding toss . There would then be two parameters

indexing the model space, and we would again select that model m*

that made (Elrn*,E) a maximum, and therefore the log likelihood ratio

a ninimurn .

A key idea in taking m* to be the worst alternative model is

that we avoid the effort of encoding a prior probability distribution

over the parameters indexing the model space M. If we are testing

an invariance model m against a class of models M obtained by

relaxing the invariance, it may be quite reasonable to assume that the

model m* in M that best fits the data (i .e ., maximizes the likelihood

function) will have a prior probability (m*Ie} that is representative

01' the class M . If' the data would not lead to a large revision of

tree odds for rn as compared to m*, we have shown that the invariance
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model m is not inconsistent with the data . If data leads to sub-

stantial revision of the odds we may wish to question the assumed

invariance and to examine in more detail the structure of our prior

ir .f'ormation regarding models in M . For example, we might have begun

w__th the hypothesis that a process generating two outcomes, heads and

tails, corresponds to a fair coin . We observe two heads in twenty

tosses, and the large shift (-32 db) from prior to posterior odds

comnar :ing the fair coin hypothesis (p = 0 .5) to the maximum likelihood

hypothesis (p = 0 .1) causes us to question the fair coin model . At

this point we may wish to consider other possible models based on

symmetry or invariance criteria (e .g ., suppose the process is generated

by rolling a fair die : a one corresponds to heads, two through six

correspond to tails . Then p = 116),

:inowledge about the model class M by means of a probability distri-

bution assigned to the set of indexing parameters (i .e ., to p) .

Let us now summarize our procedure once more for testing an invari-

ance derived model m. From the expression (7 .9), the logarithmic form

of Bayes' Rule,

ev(m :m*IE,e) - ev(m :m*Ie) = 10 log
10 {Elm, }

we find that the logarithm of the likelihood ratio for m relative to

ann alternative model m* gives a measure of the change in the odds

we would assign to m versus m* based on prior and posterior infor-

ma?.;ion . The greatest shift in the odds occurs if m* is chosen to

maximize the likelihood function ; we shall use this "worst case" as a

basis for testing the model m against the alternative models in a
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model space M. Providing m is in M, the log likelihood function

w ill . be non-positive ; it will be zero only if m maximizes the likelihood

fuunction . We shall question or reject the model m only if' the factor

b,y, which the odds are shifted (in going from prior to posterior infor-

mation) exceeds a threshold, let us say k . If the shift in the odds

Mess than k, we shall retain the model m . Then if we define

{E'm,6)
= 10 log

10 (Ejm*,e)

the form of the test is as follows

0 < 4c < k : Retain the model m

~ > k : The model is declared to be in doubt, and further
analysis is indicated .

ie threshold k reflects our state of prior information, and possibly

economic factors as well .

The Case of Exchangeable Sequences

Let us now specialize this test to the case of exchangeable

,sequences . Suppose that our experimental results E consist of n

ohservations xl , . . . , xn from an exchangeable sequence . For the

moment let us assume a discrete outcome space of N points, and let

compute the probability that out of the n observed results, nl

n,vi1 .1 be the first outcome point, n0 the second, and so forth through

fJ

result F = x 1 ,

for the Nth outcome point . The probability of the experimental

, x
I

is then

lm'
to

xn )

	

nl ;
n2

13

n1 n2

	

n
N

' pl P2

	

- pN
(7 .12)



where p i is the probability of the i th outcome point assigned on

the basis of the model m . If m* is the assumed model, a similar

expression holds with probabilities pl, . . . , pN . In computing the

ratio of the likelihood functions the multinomial coefficients cancel .

11' ' we take V to be the (natural) logarithm of the ratio of the likeli-

hood functions, we have

* = log

Now let the alternative model m* be that which maximizes the likelihood

function {x1

	

, xNlm*,E} and therefore minimizes the likelihood

ratio . This maximum is attained if pk is chosen to be the observed

relative frequency of the kth outcome :

nk

pk = n fk

then

{x1 , . . . , xn lm,ej

{xl , . . . , xn l m*,e)

k

	

p
n

	

n
log

pk
, .

k=1

	

kk

(7-i4)

N
_ -n 1~ (fk log fk - fk log pk )

	

(7.15)
k=1

Recalling the inequality of (5 .46),

N

	

N
-

	

f log f < `~
k= t k

	

k - k-=1
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(7 .13)

log pk

	

(7 .16)

we see that V < 0, with equality only if' pk = fk , as we might

expect . The log likelihood ratio for exchangeable sequences resembles

then the expression for the entropy, a result which we might expect on

the basis of the combinational derivation .



Suppose that the relative frequencies fk are close to the model

ppredictions pk . Then (fk - pk ) 1< 1 and we can use the logarithmic

expari,, :ion

loge (x) = (x-l) - 2(x-l)2 + . . .

	

(7 .17)

i'l zum i.ng a base e for the log likelihood ratio W, we have

N
= n Z fk log (pk/fk )

k= l

N

n Z fk
k= l

fk
-1)

	

2 , fk

1

	

N (p1 - f1 ) 2

2 n k=

	

fk

1npk(i - pk )

(7 .18)

(7 .19)

If pk = fk , we can replace fk in the denominator by pk, and then

-21r is exactly the well-known statistic developed by Karl Pearson to

measure goodness of fit for a distribution . Since the quantity

fk pk
(7 .20)

is approximately normally distributed with mean zero and variance one

(assuming that the model m in fact holds true) for large n by the

central limit theorem, the Pearson statistic

2

	

N (p1 - fk) 2
D = n F,		(7 .21)

k=l

	

pk

is distributed asymptotically as a X2 random variable with N-1

degrees of freedom .

Using 10 log
10

as in the earlier section of this chapter simply
introduces a multiplicative constant .
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A much stronger result is available due to Wilks [92] . If the

maximum likelihood estimates specifying the model m* have an a priori

Ji,stri.bution (that is, where E is unknown and is therefore considered

a random variable) that is asymptotically normal, then the distribution

-2* is asymptotically X2 with r degrees of freedom, where r

the dimensionality of the model space M, and 4 is the logarithm

(t,a ;e e) of the likelihood ratio . This result is considered to be

one of the fundamental achievements in the classical statistics approach

to hypothesis testing (Mood and Graybill L57], Freeman [22], Wilks [92]) .

From our point of view the use of the log likelihood ratio f

directly for hypothesis testing seems like a more satisfying procedure .

For any n, not just the large sample limit, the quantity f can be

re fitted to the shift from the prior to the posterior odds for m

relative to the maximum likelihood (worst case) model m* .

The use of the statistic 1 for testing distributions of indepen-

lent, identically distributed random variables (i .e ., equation (7 .13)),

and its relation to the classical X2 test developed by Karl Pearson

has been noted by E . T . Jaynes [41] . Jaynes' development follows in

r,art from the earlier work of I . J . Good [27] .
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Chapter VIII

SUMMARY AND CONCLUSION

To use probability theory for inductive reasoning about what is

uncertain we must begin with something that is known, namely, an indi-

vidual's state of information . We translate this state of information

into probability assignments . If we are to use the elegant models of

modern probability theory for inductive reasoning we need a conceptual

basis to justify these models as a representation of the state of

information .

The basic desideratum provides a means to achieve this conceptual

basis . If two or more states of information are perceived as equivalent

then the probabilistic model should be invariant to changes from one

of these states to another . The principle of insufficient reason

provides a simple illustration . If any relabeling of the possible

outcomes leads to an equivalent state of information, then the proba-

bilities assigned to the outcomes should remain invariant to changing

these assignments from one set of outcomes to another, hence the

probabilities assigned to each outcome must be equal .

The deterministic physical model of Gibbs' statistical mechanics

provided another example of an invariance principle. For a system in

equilibrium our state of information does not depend on time, hence

the probability distribution assigned to initial conditions should not

depend on the time at which these conditions are measured. We observed

that this invariance principle led to a maximum entropy characterization

of the probability distribution .
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De Finetti's concept of exchangeability provides a means for

applying invariance to a statistical ensemble, that is, a sequence

of experiments performed under identical conditions . The state of

information should be invariant to the sequence of the experiments,

implying through the basic desideratum that joint probability assign-

ments to experimental outcomes should be invariant to permutations

it the order of the experiments . The concept of exchangeability may

be ,_eneralized by considering the invariance to permutation to hold only

1'or sub sequences of experiments .

The inference problem for an exchangeable sequence is to characterize

the histogram summarizing a large number of observed experimental outcomes .

Since this histogram may have an unmanageably large number of degrees of

freedom, it is often advisable to introduce an additional invariance

rinciple, which we call the extended principle of insufficient reason .

This principle asserts that if the state of information is characterized

tnly by a set of constraints on the histogram, then all sequences of

experimental outcomes satisfying these constraints should be viewed

as equally probable . By computing the number of sequences resulting

in a given histogram we are led to an entropy measure for the probability

Of a given histogram; the maximum entropy principle is equivalent to

choosing the histogram that can be realized by the largest number of

(equally probable) sequences . When the constraints take the form that

an average value defined on the sequence takes on a specific (but

uuricertain) value, the probability distributions derived from the extended

rinciple of insufficient reason are characterized by sufficient statistics

for the inference of this value . Many of the common distributions of
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probability theory, such as the normal, exponential, and gamma distri-

butions, possess this characterization .

The equivalence between states of information that forms the basis

fsr the invariance approach is a situation connoting comparative ignor-

as:ce . With further information gained from additional data we

may decide that the original equivalence in states of information was

unwarranted, and a more complex encoding procedure should be used .

The test of invariance-derived models by means of Bayes' Rule is compli-

cated by the dimensionality of the space of alternative models . We

avoidd this dimensionality by taking a "worst case" approach and using

Bayes' Rule in a logarithmic form . The resulting model test is asymp-

totically equivalent to the likelihood ratio tests of classical statistics

and Pearson's traditional X2 test .

The invariance approach that has been explored in this dissertation

provides a means by which probability assignments and probabilistic models

may be related to a state of information . We have discussed a number of

successful applications of the invariance approach . Although we cannot

assert that this method provides a comprehensive solution to the proba-

b.LLitic encoding of information, it appears to offer a conceptual unity

that Bayesian probability has heretofore lacked . Much additional effort

will be needed before the full potential of the invariance approach

w ill. be apparent . It is hoped that this approach will prove to be a

significant step toward a unified methodology of inductive reasoning .
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